Files
LangBot/pkg/provider/runners/difysvapi.py

689 lines
27 KiB
Python
Raw Normal View History

from __future__ import annotations
import typing
import json
import uuid
2024-12-24 11:26:33 +08:00
import base64
2025-01-06 21:28:36 +08:00
from .. import runner
from ...core import app
import langbot_plugin.api.entities.builtin.provider.message as provider_message
from ...utils import image
import langbot_plugin.api.entities.builtin.pipeline.query as pipeline_query
from libs.dify_service_api.v1 import client, errors
@runner.runner_class('dify-service-api')
class DifyServiceAPIRunner(runner.RequestRunner):
"""Dify Service API 对话请求器"""
dify_client: client.AsyncDifyServiceClient
def __init__(self, ap: app.Application, pipeline_config: dict):
self.ap = ap
self.pipeline_config = pipeline_config
valid_app_types = ['chat', 'agent', 'workflow']
2025-05-10 18:04:58 +08:00
if self.pipeline_config['ai']['dify-service-api']['app-type'] not in valid_app_types:
raise errors.DifyAPIError(
f'不支持的 Dify 应用类型: {self.pipeline_config["ai"]["dify-service-api"]["app-type"]}'
)
api_key = self.pipeline_config['ai']['dify-service-api']['api-key']
self.dify_client = client.AsyncDifyServiceClient(
api_key=api_key,
base_url=self.pipeline_config['ai']['dify-service-api']['base-url'],
)
def _process_thinking_content(
self,
content: str,
) -> tuple[str, str]:
"""处理思维链内容
Args:
content: 原始内容
Returns:
(处理后的内容, 提取的思维链内容)
"""
remove_think = self.pipeline_config['output'].get('misc', '').get('remove-think')
thinking_content = ''
# 从 content 中提取 <think> 标签内容
if content and '<think>' in content and '</think>' in content:
import re
think_pattern = r'<think>(.*?)</think>'
think_matches = re.findall(think_pattern, content, re.DOTALL)
if think_matches:
thinking_content = '\n'.join(think_matches)
# 移除 content 中的 <think> 标签
content = re.sub(think_pattern, '', content, flags=re.DOTALL).strip()
# 3. 根据 remove_think 参数决定是否保留思维链
if remove_think:
return content, ''
else:
# 如果有思维链内容,将其以 <think> 格式添加到 content 开头
if thinking_content:
content = f'<think>\n{thinking_content}\n</think>\n{content}'.strip()
return content, thinking_content
async def _preprocess_user_message(self, query: pipeline_query.Query) -> tuple[str, list[str]]:
"""预处理用户消息,提取纯文本,并将图片上传到 Dify 服务
Returns:
tuple[str, list[str]]: 纯文本和图片的 Dify 服务图片 ID
"""
plain_text = ''
file_ids = []
if isinstance(query.user_message.content, list):
for ce in query.user_message.content:
if ce.type == 'text':
plain_text += ce.text
elif ce.type == 'image_base64':
2025-05-10 18:04:58 +08:00
image_b64, image_format = await image.extract_b64_and_format(ce.image_base64)
2024-12-24 11:26:33 +08:00
file_bytes = base64.b64decode(image_b64)
file = ('img.png', file_bytes, f'image/{image_format}')
file_upload_resp = await self.dify_client.upload_file(
file,
f'{query.session.launcher_type.value}_{query.session.launcher_id}',
)
image_id = file_upload_resp['id']
file_ids.append(image_id)
# elif ce.type == "file_url":
# file_bytes = base64.b64decode(ce.file_url)
# file_upload_resp = await self.dify_client.upload_file(
# file_bytes,
# f'{query.session.launcher_type.value}_{query.session.launcher_id}',
# )
# file_id = file_upload_resp['id']
# file_ids.append(file_id)
elif isinstance(query.user_message.content, str):
plain_text = query.user_message.content
# plain_text = "When the file content is readable, please read the content of this file. When the file is an image, describe the content of this image." if file_ids and not plain_text else plain_text
# plain_text = "The user message type cannot be parsed." if not file_ids and not plain_text else plain_text
# plain_text = plain_text if plain_text else "When the file content is readable, please read the content of this file. When the file is an image, describe the content of this image."
# print(self.pipeline_config['ai'])
plain_text = plain_text if plain_text else self.pipeline_config['ai']['dify-service-api']['base-prompt']
return plain_text, file_ids
async def _chat_messages(
self, query: pipeline_query.Query
) -> typing.AsyncGenerator[provider_message.Message, None]:
"""调用聊天助手"""
cov_id = query.session.using_conversation.uuid or ''
2025-05-20 15:32:04 +08:00
query.variables['conversation_id'] = cov_id
plain_text, image_ids = await self._preprocess_user_message(query)
files = [
{
'type': 'image',
'upload_file_id': image_id,
}
for image_id in image_ids
]
mode = 'basic' # 标记是基础编排还是工作流编排
2024-12-17 01:04:08 +08:00
basic_mode_pending_chunk = ''
2025-03-12 19:13:04 +08:00
inputs = {}
2025-03-12 19:13:04 +08:00
inputs.update(query.variables)
chunk = None # 初始化chunk变量防止在没有响应时引用错误
2025-03-12 19:13:04 +08:00
async for chunk in self.dify_client.chat_messages(
2025-03-12 19:13:04 +08:00
inputs=inputs,
query=plain_text,
user=f'{query.session.launcher_type.value}_{query.session.launcher_id}',
conversation_id=cov_id,
files=files,
timeout=120,
):
self.ap.logger.debug('dify-chat-chunk: ' + str(chunk))
2024-12-17 01:04:08 +08:00
if chunk['event'] == 'workflow_started':
mode = 'workflow'
2024-12-17 01:04:08 +08:00
if mode == 'workflow':
2024-12-17 01:04:08 +08:00
if chunk['event'] == 'node_finished':
if chunk['data']['node_type'] == 'answer':
content, _ = self._process_thinking_content(chunk['data']['outputs']['answer'])
yield provider_message.Message(
role='assistant',
content=content,
2024-12-17 01:04:08 +08:00
)
elif mode == 'basic':
2024-12-17 01:04:08 +08:00
if chunk['event'] == 'message':
basic_mode_pending_chunk += chunk['answer']
elif chunk['event'] == 'message_end':
content, _ = self._process_thinking_content(basic_mode_pending_chunk)
yield provider_message.Message(
role='assistant',
content=content,
)
2024-12-17 01:04:08 +08:00
basic_mode_pending_chunk = ''
if chunk is None:
2025-05-10 18:04:58 +08:00
raise errors.DifyAPIError('Dify API 没有返回任何响应请检查网络连接和API配置')
query.session.using_conversation.uuid = chunk['conversation_id']
async def _agent_chat_messages(
self, query: pipeline_query.Query
) -> typing.AsyncGenerator[provider_message.Message, None]:
"""调用聊天助手"""
cov_id = query.session.using_conversation.uuid or ''
2025-05-20 15:32:04 +08:00
query.variables['conversation_id'] = cov_id
plain_text, image_ids = await self._preprocess_user_message(query)
files = [
{
'type': 'image',
'transfer_method': 'local_file',
'upload_file_id': image_id,
}
for image_id in image_ids
]
ignored_events = []
2025-03-12 19:13:04 +08:00
inputs = {}
2025-03-12 19:13:04 +08:00
inputs.update(query.variables)
pending_agent_message = ''
2025-05-10 17:47:14 +08:00
chunk = None # 初始化chunk变量防止在没有响应时引用错误
async for chunk in self.dify_client.chat_messages(
2025-03-12 19:13:04 +08:00
inputs=inputs,
query=plain_text,
user=f'{query.session.launcher_type.value}_{query.session.launcher_id}',
response_mode='streaming',
conversation_id=cov_id,
files=files,
timeout=120,
):
self.ap.logger.debug('dify-agent-chunk: ' + str(chunk))
2025-01-06 21:28:36 +08:00
if chunk['event'] in ignored_events:
continue
if chunk['event'] == 'agent_message' or chunk['event'] == 'message':
pending_agent_message += chunk['answer']
else:
if pending_agent_message.strip() != '':
2025-05-10 18:04:58 +08:00
pending_agent_message = pending_agent_message.replace('</details>Action:', '</details>')
content, _ = self._process_thinking_content(pending_agent_message)
yield provider_message.Message(
role='assistant',
content=content,
)
pending_agent_message = ''
2025-01-06 21:28:36 +08:00
2025-05-10 17:47:14 +08:00
if chunk['event'] == 'agent_thought':
2025-05-10 18:04:58 +08:00
if chunk['tool'] != '' and chunk['observation'] != '': # 工具调用结果,跳过
continue
2025-01-06 21:28:36 +08:00
if chunk['tool']:
msg = provider_message.Message(
2025-05-10 17:47:14 +08:00
role='assistant',
tool_calls=[
provider_message.ToolCall(
id=chunk['id'],
2025-05-10 17:47:14 +08:00
type='function',
function=provider_message.FunctionCall(
2025-05-10 17:47:14 +08:00
name=chunk['tool'],
arguments=json.dumps({}),
),
)
],
)
yield msg
if chunk['event'] == 'message_file':
if chunk['type'] == 'image' and chunk['belongs_to'] == 'assistant':
base_url = self.dify_client.base_url
2025-01-06 21:28:36 +08:00
if base_url.endswith('/v1'):
base_url = base_url[:-3]
image_url = base_url + chunk['url']
yield provider_message.Message(
2025-05-10 17:47:14 +08:00
role='assistant',
content=[provider_message.ContentElement.from_image_url(image_url)],
)
if chunk['event'] == 'error':
2025-05-10 17:47:14 +08:00
raise errors.DifyAPIError('dify 服务错误: ' + chunk['message'])
if chunk is None:
2025-05-10 18:04:58 +08:00
raise errors.DifyAPIError('Dify API 没有返回任何响应请检查网络连接和API配置')
query.session.using_conversation.uuid = chunk['conversation_id']
async def _workflow_messages(
self, query: pipeline_query.Query
) -> typing.AsyncGenerator[provider_message.Message, None]:
"""调用工作流"""
if not query.session.using_conversation.uuid:
query.session.using_conversation.uuid = str(uuid.uuid4())
query.variables['conversation_id'] = query.session.using_conversation.uuid
plain_text, image_ids = await self._preprocess_user_message(query)
files = [
{
'type': 'image',
'transfer_method': 'local_file',
'upload_file_id': image_id,
}
for image_id in image_ids
]
ignored_events = ['text_chunk', 'workflow_started']
2025-03-12 19:13:04 +08:00
inputs = { # these variables are legacy variables, we need to keep them for compatibility
'langbot_user_message_text': plain_text,
'langbot_session_id': query.variables['session_id'],
'langbot_conversation_id': query.variables['conversation_id'],
'langbot_msg_create_time': query.variables['msg_create_time'],
2025-03-12 19:13:04 +08:00
}
2025-03-12 19:13:04 +08:00
inputs.update(query.variables)
async for chunk in self.dify_client.workflow_run(
2025-03-12 19:13:04 +08:00
inputs=inputs,
user=f'{query.session.launcher_type.value}_{query.session.launcher_id}',
files=files,
timeout=120,
):
self.ap.logger.debug('dify-workflow-chunk: ' + str(chunk))
if chunk['event'] in ignored_events:
continue
if chunk['event'] == 'node_started':
2025-05-10 18:04:58 +08:00
if chunk['data']['node_type'] == 'start' or chunk['data']['node_type'] == 'end':
continue
msg = provider_message.Message(
role='assistant',
content=None,
tool_calls=[
provider_message.ToolCall(
id=chunk['data']['node_id'],
type='function',
function=provider_message.FunctionCall(
name=chunk['data']['title'],
arguments=json.dumps({}),
),
)
],
)
yield msg
elif chunk['event'] == 'workflow_finished':
2024-12-17 01:04:08 +08:00
if chunk['data']['error']:
raise errors.DifyAPIError(chunk['data']['error'])
content, _ = self._process_thinking_content(chunk['data']['outputs']['summary'])
msg = provider_message.Message(
role='assistant',
content=content,
)
yield msg
async def _chat_messages_chunk(
self, query: pipeline_query.Query
) -> typing.AsyncGenerator[provider_message.MessageChunk, None]:
"""调用聊天助手"""
cov_id = query.session.using_conversation.uuid or ''
query.variables['conversation_id'] = cov_id
plain_text, image_ids = await self._preprocess_user_message(query)
files = [
{
'type': 'image',
'transfer_method': 'local_file',
'upload_file_id': image_id,
}
for image_id in image_ids
]
basic_mode_pending_chunk = ''
inputs = {}
inputs.update(query.variables)
message_idx = 0
chunk = None # 初始化chunk变量防止在没有响应时引用错误
is_final = False
think_start = False
think_end = False
remove_think = self.pipeline_config['output'].get('misc', '').get('remove-think')
async for chunk in self.dify_client.chat_messages(
inputs=inputs,
query=plain_text,
user=f'{query.session.launcher_type.value}_{query.session.launcher_id}',
conversation_id=cov_id,
files=files,
timeout=120,
):
self.ap.logger.debug('dify-chat-chunk: ' + str(chunk))
# if chunk['event'] == 'workflow_started':
# mode = 'workflow'
# if mode == 'workflow':
# elif mode == 'basic':
# 因为都只是返回的 message也没有工具调用什么的暂时不分类
if chunk['event'] == 'message':
message_idx += 1
if remove_think:
2025-08-15 00:55:39 +08:00
if '<think>' in chunk['answer'] and not think_start:
think_start = True
continue
if '</think>' in chunk['answer'] and not think_end:
import re
content = re.sub(r'^\n</think>', '', chunk['answer'])
basic_mode_pending_chunk += content
think_end = True
elif think_end:
basic_mode_pending_chunk += chunk['answer']
if think_start:
continue
else:
basic_mode_pending_chunk += chunk['answer']
if chunk['event'] == 'message_end':
is_final = True
if is_final or message_idx % 8 == 0:
# content, _ = self._process_thinking_content(basic_mode_pending_chunk)
yield provider_message.MessageChunk(
role='assistant',
content=basic_mode_pending_chunk,
is_final=is_final,
)
if chunk is None:
raise errors.DifyAPIError('Dify API 没有返回任何响应请检查网络连接和API配置')
query.session.using_conversation.uuid = chunk['conversation_id']
async def _agent_chat_messages_chunk(
self, query: pipeline_query.Query
) -> typing.AsyncGenerator[provider_message.MessageChunk, None]:
"""调用聊天助手"""
cov_id = query.session.using_conversation.uuid or ''
query.variables['conversation_id'] = cov_id
plain_text, image_ids = await self._preprocess_user_message(query)
files = [
{
'type': 'image',
'transfer_method': 'local_file',
'upload_file_id': image_id,
}
for image_id in image_ids
]
ignored_events = []
inputs = {}
inputs.update(query.variables)
pending_agent_message = ''
chunk = None # 初始化chunk变量防止在没有响应时引用错误
message_idx = 0
is_final = False
think_start = False
think_end = False
remove_think = self.pipeline_config['output'].get('misc', '').get('remove-think')
async for chunk in self.dify_client.chat_messages(
inputs=inputs,
query=plain_text,
user=f'{query.session.launcher_type.value}_{query.session.launcher_id}',
response_mode='streaming',
conversation_id=cov_id,
files=files,
timeout=120,
):
self.ap.logger.debug('dify-agent-chunk: ' + str(chunk))
if chunk['event'] in ignored_events:
continue
if chunk['event'] == 'agent_message':
message_idx += 1
if remove_think:
if '<think>' in chunk['answer'] and not think_start:
think_start = True
continue
if '</think>' in chunk['answer'] and not think_end:
import re
content = re.sub(r'^\n</think>', '', chunk['answer'])
pending_agent_message += content
think_end = True
elif think_end or not think_start:
pending_agent_message += chunk['answer']
if think_start:
continue
else:
pending_agent_message += chunk['answer']
elif chunk['event'] == 'message_end':
is_final = True
else:
if chunk['event'] == 'agent_thought':
if chunk['tool'] != '' and chunk['observation'] != '': # 工具调用结果,跳过
continue
message_idx += 1
if chunk['tool']:
msg = provider_message.MessageChunk(
role='assistant',
tool_calls=[
provider_message.ToolCall(
id=chunk['id'],
type='function',
function=provider_message.FunctionCall(
name=chunk['tool'],
arguments=json.dumps({}),
),
)
],
)
yield msg
if chunk['event'] == 'message_file':
message_idx += 1
if chunk['type'] == 'image' and chunk['belongs_to'] == 'assistant':
base_url = self.dify_client.base_url
if base_url.endswith('/v1'):
base_url = base_url[:-3]
image_url = base_url + chunk['url']
yield provider_message.MessageChunk(
role='assistant',
content=[provider_message.ContentElement.from_image_url(image_url)],
is_final=is_final,
)
if chunk['event'] == 'error':
raise errors.DifyAPIError('dify 服务错误: ' + chunk['message'])
if message_idx % 8 == 0 or is_final:
yield provider_message.MessageChunk(
role='assistant',
content=pending_agent_message,
is_final=is_final,
)
if chunk is None:
raise errors.DifyAPIError('Dify API 没有返回任何响应请检查网络连接和API配置')
query.session.using_conversation.uuid = chunk['conversation_id']
async def _workflow_messages_chunk(
self, query: pipeline_query.Query
) -> typing.AsyncGenerator[provider_message.MessageChunk, None]:
"""调用工作流"""
if not query.session.using_conversation.uuid:
query.session.using_conversation.uuid = str(uuid.uuid4())
query.variables['conversation_id'] = query.session.using_conversation.uuid
plain_text, image_ids = await self._preprocess_user_message(query)
files = [
{
'type': 'image',
'transfer_method': 'local_file',
'upload_file_id': image_id,
}
for image_id in image_ids
]
ignored_events = ['workflow_started']
inputs = { # these variables are legacy variables, we need to keep them for compatibility
'langbot_user_message_text': plain_text,
'langbot_session_id': query.variables['session_id'],
'langbot_conversation_id': query.variables['conversation_id'],
'langbot_msg_create_time': query.variables['msg_create_time'],
}
inputs.update(query.variables)
messsage_idx = 0
is_final = False
think_start = False
think_end = False
workflow_contents = ''
remove_think = self.pipeline_config['output'].get('misc', '').get('remove-think')
async for chunk in self.dify_client.workflow_run(
inputs=inputs,
user=f'{query.session.launcher_type.value}_{query.session.launcher_id}',
files=files,
timeout=120,
):
self.ap.logger.debug('dify-workflow-chunk: ' + str(chunk))
if chunk['event'] in ignored_events:
continue
if chunk['event'] == 'workflow_finished':
is_final = True
if chunk['data']['error']:
raise errors.DifyAPIError(chunk['data']['error'])
if chunk['event'] == 'text_chunk':
messsage_idx += 1
if remove_think:
if '<think>' in chunk['data']['text'] and not think_start:
think_start = True
continue
if '</think>' in chunk['data']['text'] and not think_end:
import re
content = re.sub(r'^\n</think>', '', chunk['data']['text'])
workflow_contents += content
think_end = True
elif think_end:
workflow_contents += chunk['data']['text']
if think_start:
continue
else:
workflow_contents += chunk['data']['text']
if chunk['event'] == 'node_started':
if chunk['data']['node_type'] == 'start' or chunk['data']['node_type'] == 'end':
continue
messsage_idx += 1
msg = provider_message.MessageChunk(
role='assistant',
content=None,
tool_calls=[
provider_message.ToolCall(
id=chunk['data']['node_id'],
type='function',
function=provider_message.FunctionCall(
name=chunk['data']['title'],
arguments=json.dumps({}),
),
)
],
)
yield msg
if messsage_idx % 8 == 0 or is_final:
yield provider_message.MessageChunk(
role='assistant',
content=workflow_contents,
is_final=is_final,
)
async def run(self, query: pipeline_query.Query) -> typing.AsyncGenerator[provider_message.Message, None]:
"""运行请求"""
if await query.adapter.is_stream_output_supported():
msg_idx = 0
if self.pipeline_config['ai']['dify-service-api']['app-type'] == 'chat':
async for msg in self._chat_messages_chunk(query):
msg_idx += 1
msg.msg_sequence = msg_idx
yield msg
elif self.pipeline_config['ai']['dify-service-api']['app-type'] == 'agent':
async for msg in self._agent_chat_messages_chunk(query):
msg_idx += 1
msg.msg_sequence = msg_idx
yield msg
elif self.pipeline_config['ai']['dify-service-api']['app-type'] == 'workflow':
async for msg in self._workflow_messages_chunk(query):
msg_idx += 1
msg.msg_sequence = msg_idx
yield msg
else:
raise errors.DifyAPIError(
f'不支持的 Dify 应用类型: {self.pipeline_config["ai"]["dify-service-api"]["app-type"]}'
)
else:
if self.pipeline_config['ai']['dify-service-api']['app-type'] == 'chat':
async for msg in self._chat_messages(query):
yield msg
elif self.pipeline_config['ai']['dify-service-api']['app-type'] == 'agent':
async for msg in self._agent_chat_messages(query):
yield msg
elif self.pipeline_config['ai']['dify-service-api']['app-type'] == 'workflow':
async for msg in self._workflow_messages(query):
yield msg
else:
raise errors.DifyAPIError(
f'不支持的 Dify 应用类型: {self.pipeline_config["ai"]["dify-service-api"]["app-type"]}'
)