Files
LangBot/pkg/provider/modelmgr/requesters/chatcmpl.py

372 lines
14 KiB
Python
Raw Normal View History

from __future__ import annotations
import asyncio
import typing
import openai
2024-01-27 21:50:40 +08:00
import openai.types.chat.chat_completion as chat_completion
2024-02-07 23:58:22 +08:00
import httpx
from .. import errors, requester
from ....core import entities as core_entities, app
from ... import entities as llm_entities
2024-02-01 16:35:00 +08:00
from ...tools import entities as tools_entities
class OpenAIChatCompletions(requester.ProviderAPIRequester):
2024-03-03 16:34:59 +08:00
"""OpenAI ChatCompletion API 请求器"""
2024-01-27 21:50:40 +08:00
client: openai.AsyncClient
is_content:bool
2025-03-16 23:16:06 +08:00
default_config: dict[str, typing.Any] = {
'base_url': 'https://api.openai.com/v1',
'timeout': 120,
2025-03-16 23:16:06 +08:00
}
async def initialize(self):
2024-01-27 21:50:40 +08:00
self.client = openai.AsyncClient(
api_key='',
2025-05-10 18:02:05 +08:00
base_url=self.requester_cfg['base_url'].replace(' ', ''),
timeout=self.requester_cfg['timeout'],
2025-05-10 18:04:58 +08:00
http_client=httpx.AsyncClient(trust_env=True, timeout=self.requester_cfg['timeout']),
)
self.is_content = False
2024-01-27 21:50:40 +08:00
async def _req(
self,
args: dict,
extra_body: dict = {},
2024-01-27 21:50:40 +08:00
) -> chat_completion.ChatCompletion:
return await self.client.chat.completions.create(**args, extra_body=extra_body)
async def _req_stream(
self,
args: dict,
extra_body: dict = {},
) -> chat_completion.ChatCompletion:
async for chunk in await self.client.chat.completions.create(**args, extra_body=extra_body):
yield chunk
2024-01-27 21:50:40 +08:00
async def _make_msg(
self,
pipeline_config: dict[str, typing.Any],
2024-01-27 21:50:40 +08:00
chat_completion: chat_completion.ChatCompletion,
) -> llm_entities.Message:
chatcmpl_message = chat_completion.choices[0].message.model_dump()
2024-01-27 21:50:40 +08:00
# 确保 role 字段存在且不为 None
if 'role' not in chatcmpl_message or chatcmpl_message['role'] is None:
chatcmpl_message['role'] = 'assistant'
2025-05-10 18:04:58 +08:00
reasoning_content = chatcmpl_message['reasoning_content'] if 'reasoning_content' in chatcmpl_message else None
2025-05-10 17:47:14 +08:00
# deepseek的reasoner模型
print(pipeline_config['trigger'].get('misc', '').get('remove_think'))
if pipeline_config['trigger'].get('misc', '').get('remove_think'):
pass
else:
if reasoning_content is not None :
chatcmpl_message['content'] = '<think>\n' + reasoning_content + '\n</think>\n' + chatcmpl_message['content']
2024-01-27 21:50:40 +08:00
message = llm_entities.Message(**chatcmpl_message)
return message
2025-06-30 17:58:18 +08:00
async def _make_msg_chunk(
self,
pipeline_config: dict[str, typing.Any],
2025-06-30 17:58:18 +08:00
chat_completion: chat_completion.ChatCompletion,
) -> llm_entities.MessageChunk:
# 处理流式chunk和完整响应的差异
# print(chat_completion.choices[0])
if hasattr(chat_completion, 'choices'):
# 完整响应模式
choice = chat_completion.choices[0]
delta = choice.delta.model_dump() if hasattr(choice, 'delta') else choice.message.model_dump()
else:
# 流式chunk模式
delta = chat_completion.delta.model_dump() if hasattr(chat_completion, 'delta') else {}
2025-06-30 17:58:18 +08:00
# 确保 role 字段存在且不为 None
# print(delta.values())
2025-06-30 17:58:18 +08:00
if 'role' not in delta or delta['role'] is None:
delta['role'] = 'assistant'
reasoning_content = delta['reasoning_content'] if 'reasoning_content' in delta else None
# deepseek的reasoner模型
if pipeline_config['trigger'].get('misc', '').get('remove_think'):
if reasoning_content is not None :
pass
else:
delta['content'] = delta['content']
else:
if reasoning_content is not None:
delta['content'] += f'<think>\n{reasoning_content}'
elif reasoning_content is None:
if self.is_content:
delta['content'] = delta['content']
else:
delta['content'] = f'\n<think>\n\n{delta["content"]}'
self.is_content = True
else:
delta['content'] += reasoning_content
2025-06-30 17:58:18 +08:00
message = llm_entities.MessageChunk(**delta)
2024-01-27 21:50:40 +08:00
2025-06-30 17:58:18 +08:00
return message
async def _closure_stream(
2024-01-27 21:50:40 +08:00
self,
query: core_entities.Query,
2024-01-27 21:50:40 +08:00
req_messages: list[dict],
use_model: requester.RuntimeLLMModel,
2024-02-01 16:35:00 +08:00
use_funcs: list[tools_entities.LLMFunction] = None,
2025-06-30 17:58:18 +08:00
stream: bool = False,
2025-04-09 21:35:59 +08:00
extra_args: dict[str, typing.Any] = {},
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
2024-02-01 16:35:00 +08:00
self.client.api_key = use_model.token_mgr.get_token()
2024-01-27 21:50:40 +08:00
2025-05-10 18:02:05 +08:00
args = {}
args['model'] = use_model.model_entity.name
2024-01-27 21:50:40 +08:00
2024-05-16 20:11:54 +08:00
if use_funcs:
2024-02-01 16:35:00 +08:00
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
2024-01-29 21:22:27 +08:00
if tools:
args['tools'] = tools
2024-01-27 21:50:40 +08:00
# 设置此次请求中的messages
2024-05-15 21:40:18 +08:00
messages = req_messages.copy()
# 检查vision
2024-05-16 20:32:30 +08:00
for msg in messages:
if 'content' in msg and isinstance(msg['content'], list):
for me in msg['content']:
if me['type'] == 'image_base64':
me['image_url'] = {'url': me['image_base64']}
me['type'] = 'image_url'
del me['image_base64']
2024-05-15 21:40:18 +08:00
args['messages'] = messages
2024-01-27 21:50:40 +08:00
2025-06-30 17:58:18 +08:00
if stream:
current_content = ''
args["stream"] = True
chunk_idx = 0
self.is_content = False
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
pipeline_config = query.pipeline_config
async for chunk in self._req_stream(args, extra_body=extra_args):
2025-06-30 17:58:18 +08:00
# 处理流式消息
delta_message = await self._make_msg_chunk(pipeline_config,chunk)
2025-06-30 17:58:18 +08:00
if delta_message.content:
current_content += delta_message.content
delta_message.content = current_content
print(current_content)
# delta_message.all_content = current_content
if delta_message.tool_calls:
for tool_call in delta_message.tool_calls:
if tool_call.id not in tool_calls_map:
tool_calls_map[tool_call.id] = llm_entities.ToolCall(
id=tool_call.id,
type=tool_call.type,
function=llm_entities.FunctionCall(
name=tool_call.function.name if tool_call.function else '',
arguments=''
),
)
if tool_call.function and tool_call.function.arguments:
# 流式处理中工具调用参数可能分多个chunk返回需要追加而不是覆盖
tool_calls_map[tool_call.id].function.arguments += tool_call.function.arguments
chunk_idx += 1
chunk_choices = getattr(chunk, 'choices', None)
if chunk_choices and getattr(chunk_choices[0], 'finish_reason', None):
2025-06-30 17:58:18 +08:00
delta_message.is_final = True
delta_message.content = current_content
if chunk_idx % 64 == 0 or delta_message.is_final:
2024-01-27 21:50:40 +08:00
yield delta_message
# return
async def _closure(
self,
query: core_entities.Query,
req_messages: list[dict],
use_model: requester.RuntimeLLMModel,
use_funcs: list[tools_entities.LLMFunction] = None,
stream: bool = False,
extra_args: dict[str, typing.Any] = {},
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
self.client.api_key = use_model.token_mgr.get_token()
args = {}
args['model'] = use_model.model_entity.name
if use_funcs:
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
2025-06-30 17:58:18 +08:00
if tools:
args['tools'] = tools
2025-06-30 17:58:18 +08:00
# 设置此次请求中的messages
messages = req_messages.copy()
2025-06-30 17:58:18 +08:00
# 检查vision
for msg in messages:
if 'content' in msg and isinstance(msg['content'], list):
for me in msg['content']:
if me['type'] == 'image_base64':
me['image_url'] = {'url': me['image_base64']}
me['type'] = 'image_url'
del me['image_base64']
args['messages'] = messages
# 发送请求
resp = await self._req(args, extra_body=extra_args)
# 处理请求结果
pipeline_config = query.pipeline_config
message = await self._make_msg(pipeline_config,resp)
return message
2025-06-30 17:58:18 +08:00
2025-03-16 23:16:06 +08:00
async def invoke_llm(
self,
query: core_entities.Query,
model: requester.RuntimeLLMModel,
messages: typing.List[llm_entities.Message],
funcs: typing.List[tools_entities.LLMFunction] = None,
2025-03-16 23:16:06 +08:00
extra_args: dict[str, typing.Any] = {},
) -> llm_entities.Message:
2024-06-19 19:13:00 +08:00
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
for m in messages:
msg_dict = m.dict(exclude_none=True)
content = msg_dict.get('content')
2024-06-19 19:13:00 +08:00
if isinstance(content, list):
# 检查 content 列表中是否每个部分都是文本
2025-05-10 18:04:58 +08:00
if all(isinstance(part, dict) and part.get('type') == 'text' for part in content):
2024-06-19 19:13:00 +08:00
# 将所有文本部分合并为一个字符串
msg_dict['content'] = '\n'.join(part['text'] for part in content)
req_messages.append(msg_dict)
2024-02-01 18:11:47 +08:00
try:
msg = await self._closure(
query=query,
req_messages=req_messages,
use_model=model,
use_funcs=funcs,
extra_args=extra_args,
)
return msg
2024-02-01 18:11:47 +08:00
except asyncio.TimeoutError:
raise errors.RequesterError('请求超时')
2024-02-01 18:11:47 +08:00
except openai.BadRequestError as e:
if 'context_length_exceeded' in e.message:
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
else:
raise errors.RequesterError(f'请求参数错误: {e.message}')
2024-02-01 18:11:47 +08:00
except openai.AuthenticationError as e:
raise errors.RequesterError(f'无效的 api-key: {e.message}')
2024-02-01 18:11:47 +08:00
except openai.NotFoundError as e:
raise errors.RequesterError(f'请求路径错误: {e.message}')
2024-02-01 18:11:47 +08:00
except openai.RateLimitError as e:
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
2024-02-01 18:11:47 +08:00
except openai.APIError as e:
raise errors.RequesterError(f'请求错误: {e.message}')
async def invoke_embedding(
self,
model: requester.RuntimeEmbeddingModel,
input_text: list[str],
extra_args: dict[str, typing.Any] = {},
) -> list[list[float]]:
"""调用 Embedding API"""
self.client.api_key = model.token_mgr.get_token()
args = {
'model': model.model_entity.name,
'input': input_text,
}
if model.model_entity.extra_args:
args.update(model.model_entity.extra_args)
args.update(extra_args)
try:
resp = await self.client.embeddings.create(**args)
return [d.embedding for d in resp.data]
except asyncio.TimeoutError:
raise errors.RequesterError('请求超时')
except openai.BadRequestError as e:
raise errors.RequesterError(f'请求参数错误: {e.message}')
async def invoke_llm_stream(
self,
query: core_entities.Query,
model: requester.RuntimeLLMModel,
messages: typing.List[llm_entities.Message],
funcs: typing.List[tools_entities.LLMFunction] = None,
stream: bool = False,
extra_args: dict[str, typing.Any] = {},
) -> llm_entities.MessageChunk:
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
for m in messages:
msg_dict = m.dict(exclude_none=True)
content = msg_dict.get('content')
if isinstance(content, list):
# 检查 content 列表中是否每个部分都是文本
if all(isinstance(part, dict) and part.get('type') == 'text' for part in content):
# 将所有文本部分合并为一个字符串
msg_dict['content'] = '\n'.join(part['text'] for part in content)
req_messages.append(msg_dict)
try:
async for item in self._closure_stream(
query=query,
req_messages=req_messages,
use_model=model,
use_funcs=funcs,
stream=stream,
extra_args=extra_args,
):
yield item
print(item)
except asyncio.TimeoutError:
raise errors.RequesterError('请求超时')
except openai.BadRequestError as e:
if 'context_length_exceeded' in e.message:
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
else:
raise errors.RequesterError(f'请求参数错误: {e.message}')
except openai.AuthenticationError as e:
raise errors.RequesterError(f'无效的 api-key: {e.message}')
except openai.NotFoundError as e:
raise errors.RequesterError(f'请求路径错误: {e.message}')
except openai.RateLimitError as e:
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
except openai.APIError as e:
raise errors.RequesterError(f'请求错误: {e.message}')