增加xAI模型支持

推荐llm-models.json新增
```json
,
        {
            "name": "grok-2-vision-1212",
            "model_name": "grok-2-vision-1212",
            "requester": "grok-chat-completions",
            "token_mgr": "grok",
            "vision_supported": true
        }
```
provider.json requester增加
```json
,
        "grok-chat-completions": {
            "args": {},
            "base-url": "https://api.x.ai/v1",
            "timeout": 120
        }
```
keys增加:
```json
,
"grok": [
            "xai-your-key"
        ]
```
This commit is contained in:
kevin
2024-12-18 23:50:52 +08:00
committed by Junyan Qin
parent d214d80579
commit 11a0c4142e
2 changed files with 145 additions and 1 deletions

View File

@@ -6,7 +6,7 @@ from . import entities, requester
from ...core import app
from . import token
from .requesters import chatcmpl, anthropicmsgs, moonshotchatcmpl, deepseekchatcmpl, ollamachat, giteeaichatcmpl
from .requesters import chatcmpl, anthropicmsgs, moonshotchatcmpl, deepseekchatcmpl, ollamachat, giteeaichatcmpl, grokchatcmpl
FETCH_MODEL_LIST_URL = "https://api.qchatgpt.rockchin.top/api/v2/fetch/model_list"

View File

@@ -0,0 +1,144 @@
from __future__ import annotations
import asyncio
import typing
import json
import base64
from typing import AsyncGenerator
import openai
import openai.types.chat.chat_completion as chat_completion
import httpx
import aiohttp
import async_lru
from .. import entities, errors, requester
from ....core import entities as core_entities, app
from ... import entities as llm_entities
from ...tools import entities as tools_entities
from ....utils import image
@requester.requester_class("grok-chat-completions")
class GrokChatCompletions(requester.LLMAPIRequester):
"""grok ChatCompletion API 请求器"""
client: openai.AsyncClient
requester_cfg: dict
def __init__(self, ap: app.Application):
self.ap = ap
self.requester_cfg = self.ap.provider_cfg.data['requester']['grok-chat-completions']
async def initialize(self):
self.client = openai.AsyncClient(
api_key="",
base_url=self.requester_cfg['base-url'],
timeout=self.requester_cfg['timeout'],
http_client=httpx.AsyncClient(
proxies=self.ap.proxy_mgr.get_forward_proxies()
)
)
async def _req(
self,
args: dict,
) -> chat_completion.ChatCompletion:
return await self.client.chat.completions.create(**args)
async def _make_msg(
self,
chat_completion: chat_completion.ChatCompletion,
) -> llm_entities.Message:
chatcmpl_message = chat_completion.choices[0].message.dict()
# 确保 role 字段存在且不为 None
if 'role' not in chatcmpl_message or chatcmpl_message['role'] is None:
chatcmpl_message['role'] = 'assistant'
message = llm_entities.Message(**chatcmpl_message)
return message
async def _closure(
self,
req_messages: list[dict],
use_model: entities.LLMModelInfo,
use_funcs: list[tools_entities.LLMFunction] = None,
) -> llm_entities.Message:
self.client.api_key = use_model.token_mgr.get_token()
args = self.requester_cfg['args'].copy()
args["model"] = use_model.name if use_model.model_name is None else use_model.model_name
if use_funcs:
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
if tools:
args["tools"] = tools
# 设置此次请求中的messages
messages = req_messages.copy()
# 检查vision
for msg in messages:
if 'content' in msg and isinstance(msg["content"], list):
for me in msg["content"]:
if me["type"] == "image_url":
me["image_url"]['url'] = await self.get_base64_str(me["image_url"]['url'])
args["messages"] = messages
# 发送请求
resp = await self._req(args)
# 处理请求结果
message = await self._make_msg(resp)
return message
async def call(
self,
model: entities.LLMModelInfo,
messages: typing.List[llm_entities.Message],
funcs: typing.List[tools_entities.LLMFunction] = None,
) -> llm_entities.Message:
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
for m in messages:
msg_dict = m.dict(exclude_none=True)
content = msg_dict.get("content")
if isinstance(content, list):
# 检查 content 列表中是否每个部分都是文本
if all(isinstance(part, dict) and part.get("type") == "text" for part in content):
# 将所有文本部分合并为一个字符串
msg_dict["content"] = "\n".join(part["text"] for part in content)
req_messages.append(msg_dict)
try:
return await self._closure(req_messages, model, funcs)
except asyncio.TimeoutError:
raise errors.RequesterError('请求超时')
except openai.BadRequestError as e:
if 'context_length_exceeded' in e.message:
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
else:
raise errors.RequesterError(f'请求参数错误: {e.message}')
except openai.AuthenticationError as e:
raise errors.RequesterError(f'无效的 api-key: {e.message}')
except openai.NotFoundError as e:
raise errors.RequesterError(f'请求路径错误: {e.message}')
except openai.RateLimitError as e:
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
except openai.APIError as e:
raise errors.RequesterError(f'请求错误: {e.message}')
@async_lru.alru_cache(maxsize=128)
async def get_base64_str(
self,
original_url: str,
) -> str:
base64_image, image_format = await image.qq_image_url_to_base64(original_url)
return f"data:image/{image_format};base64,{base64_image}"