mirror of
https://github.com/langbot-app/LangBot.git
synced 2025-11-25 19:37:36 +08:00
流式基本流程已通过修改了yield和return的冲突导致的问题
This commit is contained in:
@@ -59,8 +59,11 @@ class ChatMessageHandler(handler.MessageHandler):
|
|||||||
query.user_message.content = event_ctx.event.alter
|
query.user_message.content = event_ctx.event.alter
|
||||||
|
|
||||||
text_length = 0
|
text_length = 0
|
||||||
|
try:
|
||||||
is_stream = query.adapter.is_stream_output_supported()
|
is_stream = query.adapter.is_stream
|
||||||
|
except AttributeError:
|
||||||
|
is_stream = False
|
||||||
|
print(is_stream)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
for r in runner_module.preregistered_runners:
|
for r in runner_module.preregistered_runners:
|
||||||
@@ -70,31 +73,44 @@ class ChatMessageHandler(handler.MessageHandler):
|
|||||||
else:
|
else:
|
||||||
raise ValueError(f'未找到请求运行器: {query.pipeline_config["ai"]["runner"]["runner"]}')
|
raise ValueError(f'未找到请求运行器: {query.pipeline_config["ai"]["runner"]["runner"]}')
|
||||||
if is_stream:
|
if is_stream:
|
||||||
async for results in runner.run(query):
|
# async for results in runner.run(query):
|
||||||
async for result in results:
|
async for result in runner.run(query):
|
||||||
|
print(result)
|
||||||
|
query.resp_messages.append(result)
|
||||||
|
print(result)
|
||||||
|
|
||||||
query.resp_messages.append(result)
|
self.ap.logger.info(f'对话({query.query_id})响应: {self.cut_str(result.readable_str())}')
|
||||||
|
|
||||||
self.ap.logger.info(f'对话({query.query_id})流式响应: {self.cut_str(result.readable_str())}')
|
if result.content is not None:
|
||||||
|
text_length += len(result.content)
|
||||||
|
|
||||||
if result.content is not None:
|
yield entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||||
text_length += len(result.content)
|
# for result in results:
|
||||||
|
#
|
||||||
# current_chain = platform_message.MessageChain([])
|
# query.resp_messages.append(result)
|
||||||
# for msg in accumulated_messages:
|
# print(result)
|
||||||
# if msg.content is not None:
|
#
|
||||||
# current_chain.append(platform_message.Plain(msg.content))
|
# self.ap.logger.info(f'对话({query.query_id})流式响应: {self.cut_str(result.content)}')
|
||||||
# query.resp_message_chain = [current_chain]
|
#
|
||||||
|
# if result.content is not None:
|
||||||
yield entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
# text_length += len(result.content)
|
||||||
|
#
|
||||||
|
# # current_chain = platform_message.MessageChain([])
|
||||||
|
# # for msg in accumulated_messages:
|
||||||
|
# # if msg.content is not None:
|
||||||
|
# # current_chain.append(platform_message.Plain(msg.content))
|
||||||
|
# # query.resp_message_chain = [current_chain]
|
||||||
|
#
|
||||||
|
# yield entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||||
# query.resp_messages.append(results)
|
# query.resp_messages.append(results)
|
||||||
# self.ap.logger.info(f'对话({query.query_id})响应')
|
# self.ap.logger.info(f'对话({query.query_id})响应')
|
||||||
# yield entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
# yield entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
|
print("非流式")
|
||||||
async for result in runner.run(query):
|
async for result in runner.run(query):
|
||||||
query.resp_messages.append(result)
|
query.resp_messages.append(result)
|
||||||
|
print(result)
|
||||||
|
|
||||||
self.ap.logger.info(f'对话({query.query_id})响应: {self.cut_str(result.readable_str())}')
|
self.ap.logger.info(f'对话({query.query_id})响应: {self.cut_str(result.readable_str())}')
|
||||||
|
|
||||||
|
|||||||
@@ -3,6 +3,7 @@ from __future__ import annotations
|
|||||||
import random
|
import random
|
||||||
import asyncio
|
import asyncio
|
||||||
|
|
||||||
|
from typing_inspection.typing_objects import is_final
|
||||||
|
|
||||||
from ...platform.types import events as platform_events
|
from ...platform.types import events as platform_events
|
||||||
from ...platform.types import message as platform_message
|
from ...platform.types import message as platform_message
|
||||||
@@ -39,12 +40,16 @@ class SendResponseBackStage(stage.PipelineStage):
|
|||||||
quote_origin = query.pipeline_config['output']['misc']['quote-origin']
|
quote_origin = query.pipeline_config['output']['misc']['quote-origin']
|
||||||
|
|
||||||
has_chunks = any(isinstance(msg, llm_entities.MessageChunk) for msg in query.resp_messages)
|
has_chunks = any(isinstance(msg, llm_entities.MessageChunk) for msg in query.resp_messages)
|
||||||
|
print(has_chunks)
|
||||||
if has_chunks and hasattr(query.adapter,'reply_message_chunk'):
|
if has_chunks and hasattr(query.adapter,'reply_message_chunk'):
|
||||||
|
is_final = [msg.is_final for msg in query.resp_messages][0]
|
||||||
|
print(is_final)
|
||||||
await query.adapter.reply_message_chunk(
|
await query.adapter.reply_message_chunk(
|
||||||
message_source=query.message_event,
|
message_source=query.message_event,
|
||||||
message_id=query.query_id,
|
message_id=query.message_event.message_chain.message_id,
|
||||||
message_generator=query.resp_message_chain[-1],
|
message=query.resp_message_chain[-1],
|
||||||
quote_origin=quote_origin,
|
quote_origin=quote_origin,
|
||||||
|
is_final=is_final,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
await query.adapter.reply_message(
|
await query.adapter.reply_message(
|
||||||
|
|||||||
@@ -25,6 +25,8 @@ class MessagePlatformAdapter(metaclass=abc.ABCMeta):
|
|||||||
|
|
||||||
logger: EventLogger
|
logger: EventLogger
|
||||||
|
|
||||||
|
is_stream: bool
|
||||||
|
|
||||||
def __init__(self, config: dict, ap: app.Application, logger: EventLogger):
|
def __init__(self, config: dict, ap: app.Application, logger: EventLogger):
|
||||||
"""初始化适配器
|
"""初始化适配器
|
||||||
|
|
||||||
@@ -67,6 +69,7 @@ class MessagePlatformAdapter(metaclass=abc.ABCMeta):
|
|||||||
message_id: int,
|
message_id: int,
|
||||||
message: platform_message.MessageChain,
|
message: platform_message.MessageChain,
|
||||||
quote_origin: bool = False,
|
quote_origin: bool = False,
|
||||||
|
is_final: bool = False,
|
||||||
):
|
):
|
||||||
"""回复消息(流式输出)
|
"""回复消息(流式输出)
|
||||||
Args:
|
Args:
|
||||||
@@ -114,6 +117,7 @@ class MessagePlatformAdapter(metaclass=abc.ABCMeta):
|
|||||||
|
|
||||||
async def is_stream_output_supported(self) -> bool:
|
async def is_stream_output_supported(self) -> bool:
|
||||||
"""是否支持流式输出"""
|
"""是否支持流式输出"""
|
||||||
|
self.is_stream = False
|
||||||
return False
|
return False
|
||||||
|
|
||||||
async def kill(self) -> bool:
|
async def kill(self) -> bool:
|
||||||
|
|||||||
@@ -18,6 +18,7 @@ import aiohttp
|
|||||||
import lark_oapi.ws.exception
|
import lark_oapi.ws.exception
|
||||||
import quart
|
import quart
|
||||||
from lark_oapi.api.im.v1 import *
|
from lark_oapi.api.im.v1 import *
|
||||||
|
from lark_oapi.api.cardkit.v1 import *
|
||||||
|
|
||||||
from .. import adapter
|
from .. import adapter
|
||||||
from ...core import app
|
from ...core import app
|
||||||
@@ -348,6 +349,8 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
|||||||
|
|
||||||
card_id_dict: dict[str, str]
|
card_id_dict: dict[str, str]
|
||||||
|
|
||||||
|
seq: int
|
||||||
|
|
||||||
def __init__(self, config: dict, ap: app.Application, logger: EventLogger):
|
def __init__(self, config: dict, ap: app.Application, logger: EventLogger):
|
||||||
self.config = config
|
self.config = config
|
||||||
self.ap = ap
|
self.ap = ap
|
||||||
@@ -356,6 +359,7 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
|||||||
self.listeners = {}
|
self.listeners = {}
|
||||||
self.message_id_to_card_id = {}
|
self.message_id_to_card_id = {}
|
||||||
self.card_id_dict = {}
|
self.card_id_dict = {}
|
||||||
|
self.seq = 0
|
||||||
|
|
||||||
@self.quart_app.route('/lark/callback', methods=['POST'])
|
@self.quart_app.route('/lark/callback', methods=['POST'])
|
||||||
async def lark_callback():
|
async def lark_callback():
|
||||||
@@ -401,54 +405,79 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
|||||||
return {'code': 500, 'message': 'error'}
|
return {'code': 500, 'message': 'error'}
|
||||||
|
|
||||||
|
|
||||||
def is_stream_output_supported() -> bool:
|
async def is_stream_output_supported() -> bool:
|
||||||
is_stream = False
|
is_stream = False
|
||||||
if self.config.get("",None):
|
if self.config.get("enable-card-reply",None):
|
||||||
is_stream = True
|
is_stream = True
|
||||||
|
self.is_stream = is_stream
|
||||||
|
|
||||||
return is_stream
|
return is_stream
|
||||||
|
|
||||||
async def create_card_id():
|
async def create_card_id(message_id):
|
||||||
try:
|
try:
|
||||||
is_stream = is_stream_output_supported()
|
is_stream = await is_stream_output_supported()
|
||||||
if is_stream:
|
if is_stream:
|
||||||
self.ap.logger.debug('飞书支持stream输出,创建卡片......')
|
self.ap.logger.debug('飞书支持stream输出,创建卡片......')
|
||||||
|
|
||||||
card_id = ''
|
# card_id = ''
|
||||||
if self.card_id_dict:
|
# # if self.card_id_dict:
|
||||||
card_id = [k for k,v in self.card_id_dict.items() if (v+datetime.timedelta(days=14))< datetime.datetime.now()][0]
|
# # card_id = [k for k,v in self.card_id_dict.items() if (v+datetime.timedelta(days=14))< datetime.datetime.now()][0]
|
||||||
|
#
|
||||||
|
# if self.card_id_dict is None:
|
||||||
|
# # content = {
|
||||||
|
# # "type": "card_json",
|
||||||
|
# # "data": {"schema":"2.0","header":{"title":{"content":"bot","tag":"plain_text"}},"body":{"elements":[{"tag":"markdown","content":""}]}}
|
||||||
|
# # }
|
||||||
|
# card_data = {"schema":"2.0","header":{"title":{"content":"bot","tag":"plain_text"}},
|
||||||
|
# "body":{"elements":[{"tag":"markdown","content":""}]},"config": {"streaming_mode": True,
|
||||||
|
# "streaming_config": {"print_strategy": "fast"}}}
|
||||||
|
#
|
||||||
|
# request: CreateCardRequest = CreateCardRequest.builder() \
|
||||||
|
# .request_body(
|
||||||
|
# CreateCardRequestBody.builder()
|
||||||
|
# .type("card_json")
|
||||||
|
# .data(json.dumps(card_data)) \
|
||||||
|
# .build()
|
||||||
|
# ).build()
|
||||||
|
#
|
||||||
|
# # 发起请求
|
||||||
|
# response: CreateCardResponse = self.api_client.cardkit.v1.card.create(request)
|
||||||
|
#
|
||||||
|
#
|
||||||
|
# # 处理失败返回
|
||||||
|
# if not response.success():
|
||||||
|
# raise Exception(
|
||||||
|
# f"client.cardkit.v1.card.create failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}")
|
||||||
|
#
|
||||||
|
# self.ap.logger.debug(f'飞书卡片创建成功,卡片ID: {response.data.card_id}')
|
||||||
|
# self.card_id_dict[response.data.card_id] = datetime.datetime.now()
|
||||||
|
#
|
||||||
|
# card_id = response.data.card_id
|
||||||
|
card_data = {"schema": "2.0", "header": {"title": {"content": "bot", "tag": "plain_text"}},
|
||||||
|
"body": {"elements": [{"tag": "markdown", "content": "[思考中.....]","element_id":"markdown_1"}]},
|
||||||
|
"config": {"streaming_mode": True,
|
||||||
|
"streaming_config": {"print_strategy": "fast"}}}
|
||||||
|
|
||||||
if self.card_id_dict is None or card_id == '':
|
request: CreateCardRequest = CreateCardRequest.builder() \
|
||||||
# content = {
|
.request_body(
|
||||||
# "type": "card_json",
|
CreateCardRequestBody.builder()
|
||||||
# "data": {"schema":"2.0","header":{"title":{"content":"bot","tag":"plain_text"}},"body":{"elements":[{"tag":"markdown","content":""}]}}
|
.type("card_json")
|
||||||
# }
|
.data(json.dumps(card_data)) \
|
||||||
card_data = {"schema":"2.0","header":{"title":{"content":"bot","tag":"plain_text"}},
|
.build()
|
||||||
"body":{"elements":[{"tag":"markdown","content":""}]},"config": {"streaming_mode": True,
|
).build()
|
||||||
"streaming_config": {"print_strategy": "fast"}}}
|
|
||||||
|
|
||||||
request: CreateCardRequest = (
|
# 发起请求
|
||||||
CreateCardRequest.builder()
|
response: CreateCardResponse = self.api_client.cardkit.v1.card.create(request)
|
||||||
.request_body(
|
|
||||||
CreateCardRequestBody.builder()
|
|
||||||
.type("card_json")
|
|
||||||
.data(json.dumps(card_data))
|
|
||||||
.build()
|
|
||||||
)
|
|
||||||
)
|
|
||||||
# 发起请求
|
|
||||||
response: CreateCardResponse = await self.api_client.im.v1.card.create(request)
|
|
||||||
|
|
||||||
|
# 处理失败返回
|
||||||
|
if not response.success():
|
||||||
|
raise Exception(
|
||||||
|
f"client.cardkit.v1.card.create failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}")
|
||||||
|
|
||||||
# 处理失败返回
|
self.ap.logger.debug(f'飞书卡片创建成功,卡片ID: {response.data.card_id}')
|
||||||
if not response.success():
|
self.card_id_dict[message_id] = response.data.card_id
|
||||||
raise Exception(
|
|
||||||
f"client.cardkit.v1.card.create failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}")
|
|
||||||
|
|
||||||
self.ap.logger.debug(f'飞书卡片创建成功,卡片ID: {response.data.card_id}')
|
card_id = response.data.card_id
|
||||||
self.card_id_dict[response.data.card_id] = datetime.datetime.now()
|
|
||||||
|
|
||||||
card_id = response.data.card_id
|
|
||||||
return card_id
|
return card_id
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
@@ -458,10 +487,10 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
|||||||
|
|
||||||
|
|
||||||
async def on_message(event: lark_oapi.im.v1.P2ImMessageReceiveV1):
|
async def on_message(event: lark_oapi.im.v1.P2ImMessageReceiveV1):
|
||||||
if is_stream_output_supported():
|
if await is_stream_output_supported():
|
||||||
self.ap.logger.debug('卡片回复模式开启')
|
self.ap.logger.debug('卡片回复模式开启')
|
||||||
# 开启卡片回复模式. 这里可以实现飞书一发消息,马上创建卡片进行回复"思考中..."
|
# 开启卡片回复模式. 这里可以实现飞书一发消息,马上创建卡片进行回复"思考中..."
|
||||||
card_id = await create_card_id()
|
card_id = await create_card_id(event.event.message.message_id)
|
||||||
reply_message_id = await self.create_message_card(card_id, event.event.message.message_id)
|
reply_message_id = await self.create_message_card(card_id, event.event.message.message_id)
|
||||||
self.message_id_to_card_id[event.event.message.message_id] = (reply_message_id, time.time())
|
self.message_id_to_card_id[event.event.message.message_id] = (reply_message_id, time.time())
|
||||||
|
|
||||||
@@ -500,8 +529,8 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
|||||||
# TODO 目前只支持卡片模板方式,且卡片变量一定是content,未来这块要做成可配置
|
# TODO 目前只支持卡片模板方式,且卡片变量一定是content,未来这块要做成可配置
|
||||||
# 发消息马上就会回复显示初始化的content信息,即思考中
|
# 发消息马上就会回复显示初始化的content信息,即思考中
|
||||||
content = {
|
content = {
|
||||||
'type': 'template',
|
'type': 'card',
|
||||||
'data': {'template_id': card_id, 'template_variable': {'content': 'Thinking...'}},
|
'data': {'card_id': card_id, 'template_variable': {'content': 'Thinking...'}},
|
||||||
}
|
}
|
||||||
request: ReplyMessageRequest = (
|
request: ReplyMessageRequest = (
|
||||||
ReplyMessageRequest.builder()
|
ReplyMessageRequest.builder()
|
||||||
@@ -564,35 +593,49 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
|||||||
async def reply_message_chunk(
|
async def reply_message_chunk(
|
||||||
self,
|
self,
|
||||||
message_source: platform_events.MessageEvent,
|
message_source: platform_events.MessageEvent,
|
||||||
|
message_id: str,
|
||||||
message: platform_message.MessageChain,
|
message: platform_message.MessageChain,
|
||||||
quote_origin: bool = False,
|
quote_origin: bool = False,
|
||||||
|
is_final: bool = False,
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
回复消息变成更新卡片消息
|
回复消息变成更新卡片消息
|
||||||
"""
|
"""
|
||||||
lark_message = await self.message_converter.yiri2target(message, self.api_client)
|
lark_message = await self.message_converter.yiri2target(message, self.api_client)
|
||||||
|
|
||||||
|
if not is_final:
|
||||||
|
self.seq += 1
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
text_message = ''
|
text_message = ''
|
||||||
for ele in lark_message[0]:
|
for ele in lark_message[0]:
|
||||||
if ele['tag'] == 'text':
|
if ele['tag'] == 'text':
|
||||||
text_message += ele['text']
|
text_message += ele['text']
|
||||||
elif ele['tag'] == 'md':
|
elif ele['tag'] == 'md':
|
||||||
text_message += ele['text']
|
text_message += ele['text']
|
||||||
|
print(text_message)
|
||||||
|
|
||||||
content = {
|
content = {
|
||||||
'type': 'template',
|
'type': 'card_json',
|
||||||
'data': {'template_id': self.config['card_template_id'], 'template_variable': {'content': text_message}},
|
'data': {'card_id': self.card_id_dict[message_id], 'elements': {'content': text_message}},
|
||||||
}
|
}
|
||||||
|
|
||||||
request: PatchMessageRequest = (
|
request: ContentCardElementRequest = ContentCardElementRequest.builder() \
|
||||||
PatchMessageRequest.builder()
|
.card_id(self.card_id_dict[message_id]) \
|
||||||
.message_id(self.message_id_to_card_id[message_source.message_chain.message_id][0])
|
.element_id("markdown_1") \
|
||||||
.request_body(PatchMessageRequestBody.builder().content(json.dumps(content)).build())
|
.request_body(ContentCardElementRequestBody.builder()
|
||||||
|
# .uuid("a0d69e20-1dd1-458b-k525-dfeca4015204")
|
||||||
|
.content(text_message)
|
||||||
|
.sequence(self.seq)
|
||||||
|
.build()) \
|
||||||
.build()
|
.build()
|
||||||
)
|
|
||||||
|
|
||||||
|
if is_final:
|
||||||
|
self.seq = 0
|
||||||
# 发起请求
|
# 发起请求
|
||||||
response: PatchMessageResponse = self.api_client.im.v1.message.patch(request)
|
response: ContentCardElementResponse = self.api_client.cardkit.v1.card_element.content(request)
|
||||||
|
|
||||||
|
|
||||||
# 处理失败返回
|
# 处理失败返回
|
||||||
if not response.success():
|
if not response.success():
|
||||||
|
|||||||
@@ -140,12 +140,12 @@ class MessageChunk(pydantic.BaseModel):
|
|||||||
content: typing.Optional[list[ContentElement]] | typing.Optional[str] = None
|
content: typing.Optional[list[ContentElement]] | typing.Optional[str] = None
|
||||||
"""内容"""
|
"""内容"""
|
||||||
|
|
||||||
# tool_calls: typing.Optional[list[ToolCall]] = None
|
tool_calls: typing.Optional[list[ToolCall]] = None
|
||||||
"""工具调用"""
|
"""工具调用"""
|
||||||
|
|
||||||
tool_call_id: typing.Optional[str] = None
|
tool_call_id: typing.Optional[str] = None
|
||||||
|
|
||||||
tool_calls: typing.Optional[list[ToolCallChunk]] = None
|
# tool_calls: typing.Optional[list[ToolCallChunk]] = None
|
||||||
|
|
||||||
is_final: bool = False
|
is_final: bool = False
|
||||||
|
|
||||||
|
|||||||
@@ -62,7 +62,7 @@ class LLMAPIRequester(metaclass=abc.ABCMeta):
|
|||||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||||
stream: bool = False,
|
stream: bool = False,
|
||||||
extra_args: dict[str, typing.Any] = {},
|
extra_args: dict[str, typing.Any] = {},
|
||||||
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
|
) -> llm_entities.Message:
|
||||||
"""调用API
|
"""调用API
|
||||||
|
|
||||||
Args:
|
Args:
|
||||||
@@ -72,6 +72,29 @@ class LLMAPIRequester(metaclass=abc.ABCMeta):
|
|||||||
extra_args (dict[str, typing.Any], optional): 额外的参数. Defaults to {}.
|
extra_args (dict[str, typing.Any], optional): 额外的参数. Defaults to {}.
|
||||||
|
|
||||||
Returns:
|
Returns:
|
||||||
llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]: 返回消息对象
|
llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk]: 返回消息对象
|
||||||
|
"""
|
||||||
|
pass
|
||||||
|
|
||||||
|
@abc.abstractmethod
|
||||||
|
async def invoke_llm_stream(
|
||||||
|
self,
|
||||||
|
query: core_entities.Query,
|
||||||
|
model: RuntimeLLMModel,
|
||||||
|
messages: typing.List[llm_entities.Message],
|
||||||
|
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||||
|
stream: bool = False,
|
||||||
|
extra_args: dict[str, typing.Any] = {},
|
||||||
|
) -> llm_entities.MessageChunk:
|
||||||
|
"""调用API
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (RuntimeLLMModel): 使用的模型信息
|
||||||
|
messages (typing.List[llm_entities.Message]): 消息对象列表
|
||||||
|
funcs (typing.List[tools_entities.LLMFunction], optional): 使用的工具函数列表. Defaults to None.
|
||||||
|
extra_args (dict[str, typing.Any], optional): 额外的参数. Defaults to {}.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk]: 返回消息对象
|
||||||
"""
|
"""
|
||||||
pass
|
pass
|
||||||
|
|||||||
@@ -38,6 +38,15 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
|||||||
) -> chat_completion.ChatCompletion:
|
) -> chat_completion.ChatCompletion:
|
||||||
return await self.client.chat.completions.create(**args, extra_body=extra_body)
|
return await self.client.chat.completions.create(**args, extra_body=extra_body)
|
||||||
|
|
||||||
|
async def _req_stream(
|
||||||
|
self,
|
||||||
|
args: dict,
|
||||||
|
extra_body: dict = {},
|
||||||
|
) -> chat_completion.ChatCompletion:
|
||||||
|
|
||||||
|
async for chunk in await self.client.chat.completions.create(**args, extra_body=extra_body):
|
||||||
|
yield chunk
|
||||||
|
|
||||||
async def _make_msg(
|
async def _make_msg(
|
||||||
self,
|
self,
|
||||||
chat_completion: chat_completion.ChatCompletion,
|
chat_completion: chat_completion.ChatCompletion,
|
||||||
@@ -62,9 +71,19 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
|||||||
self,
|
self,
|
||||||
chat_completion: chat_completion.ChatCompletion,
|
chat_completion: chat_completion.ChatCompletion,
|
||||||
) -> llm_entities.MessageChunk:
|
) -> llm_entities.MessageChunk:
|
||||||
choice = chat_completion.choices[0]
|
|
||||||
delta = choice.delta.model_dump()
|
# 处理流式chunk和完整响应的差异
|
||||||
|
# print(chat_completion.choices[0])
|
||||||
|
if hasattr(chat_completion, 'choices'):
|
||||||
|
# 完整响应模式
|
||||||
|
choice = chat_completion.choices[0]
|
||||||
|
delta = choice.delta.model_dump() if hasattr(choice, 'delta') else choice.message.model_dump()
|
||||||
|
else:
|
||||||
|
# 流式chunk模式
|
||||||
|
delta = chat_completion.delta.model_dump() if hasattr(chat_completion, 'delta') else {}
|
||||||
|
|
||||||
# 确保 role 字段存在且不为 None
|
# 确保 role 字段存在且不为 None
|
||||||
|
# print(delta)
|
||||||
if 'role' not in delta or delta['role'] is None:
|
if 'role' not in delta or delta['role'] is None:
|
||||||
delta['role'] = 'assistant'
|
delta['role'] = 'assistant'
|
||||||
|
|
||||||
@@ -78,8 +97,8 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
|||||||
message = llm_entities.MessageChunk(**delta)
|
message = llm_entities.MessageChunk(**delta)
|
||||||
|
|
||||||
return message
|
return message
|
||||||
|
|
||||||
async def _closure(
|
async def _closure_stream(
|
||||||
self,
|
self,
|
||||||
query: core_entities.Query,
|
query: core_entities.Query,
|
||||||
req_messages: list[dict],
|
req_messages: list[dict],
|
||||||
@@ -87,7 +106,7 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
|||||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||||
stream: bool = False,
|
stream: bool = False,
|
||||||
extra_args: dict[str, typing.Any] = {},
|
extra_args: dict[str, typing.Any] = {},
|
||||||
) -> llm_entities.Message:
|
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
|
||||||
self.client.api_key = use_model.token_mgr.get_token()
|
self.client.api_key = use_model.token_mgr.get_token()
|
||||||
|
|
||||||
args = {}
|
args = {}
|
||||||
@@ -115,36 +134,76 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
|||||||
|
|
||||||
if stream:
|
if stream:
|
||||||
current_content = ''
|
current_content = ''
|
||||||
async for chunk in await self._req(args, extra_body=extra_args):
|
args["stream"] = True
|
||||||
|
async for chunk in self._req_stream(args, extra_body=extra_args):
|
||||||
|
# print(chunk)
|
||||||
|
|
||||||
# 处理流式消息
|
# 处理流式消息
|
||||||
delta_message = await self._make_msg_chunk(
|
delta_message = await self._make_msg_chunk(chunk)
|
||||||
chat_completion=chunk,
|
|
||||||
)
|
|
||||||
if delta_message.content:
|
if delta_message.content:
|
||||||
current_content += delta_message.content
|
current_content += delta_message.content
|
||||||
|
delta_message.content = current_content
|
||||||
|
print(current_content)
|
||||||
delta_message.all_content = current_content
|
delta_message.all_content = current_content
|
||||||
|
|
||||||
# 检查是否为最后一个块
|
# # 检查是否为最后一个块
|
||||||
if chunk.choices[0].finish_reason is not None:
|
# if chunk.finish_reason is not None:
|
||||||
|
# delta_message.is_final = True
|
||||||
|
#
|
||||||
|
# yield delta_message
|
||||||
|
# 检查结束标志
|
||||||
|
chunk_choices = getattr(chunk, 'choices', None)
|
||||||
|
if chunk_choices and getattr(chunk_choices[0], 'finish_reason', None):
|
||||||
delta_message.is_final = True
|
delta_message.is_final = True
|
||||||
|
|
||||||
yield delta_message
|
yield delta_message
|
||||||
return
|
# return
|
||||||
|
|
||||||
else:
|
|
||||||
|
|
||||||
# 非流式请求
|
|
||||||
resp = await self._req(args, extra_body=extra_args)
|
async def _closure(
|
||||||
# 处理请求结果
|
self,
|
||||||
# 发送请求
|
query: core_entities.Query,
|
||||||
resp = await self._req(args, extra_body=extra_args)
|
req_messages: list[dict],
|
||||||
|
use_model: requester.RuntimeLLMModel,
|
||||||
|
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||||
|
stream: bool = False,
|
||||||
|
extra_args: dict[str, typing.Any] = {},
|
||||||
|
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
|
||||||
|
self.client.api_key = use_model.token_mgr.get_token()
|
||||||
|
|
||||||
# 处理请求结果
|
args = {}
|
||||||
message = await self._make_msg(resp)
|
args['model'] = use_model.model_entity.name
|
||||||
|
|
||||||
return message
|
if use_funcs:
|
||||||
|
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
|
||||||
|
|
||||||
|
if tools:
|
||||||
|
args['tools'] = tools
|
||||||
|
|
||||||
|
# 设置此次请求中的messages
|
||||||
|
messages = req_messages.copy()
|
||||||
|
|
||||||
|
# 检查vision
|
||||||
|
for msg in messages:
|
||||||
|
if 'content' in msg and isinstance(msg['content'], list):
|
||||||
|
for me in msg['content']:
|
||||||
|
if me['type'] == 'image_base64':
|
||||||
|
me['image_url'] = {'url': me['image_base64']}
|
||||||
|
me['type'] = 'image_url'
|
||||||
|
del me['image_base64']
|
||||||
|
|
||||||
|
args['messages'] = messages
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# 发送请求
|
||||||
|
|
||||||
|
resp = await self._req(args, extra_body=extra_args)
|
||||||
|
# 处理请求结果
|
||||||
|
message = await self._make_msg(resp)
|
||||||
|
|
||||||
|
|
||||||
|
return message
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@@ -171,8 +230,9 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
|||||||
req_messages.append(msg_dict)
|
req_messages.append(msg_dict)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|
||||||
if stream:
|
if stream:
|
||||||
async for item in self._closure(
|
async for item in self._closure_stream(
|
||||||
query=query,
|
query=query,
|
||||||
req_messages=req_messages,
|
req_messages=req_messages,
|
||||||
use_model=model,
|
use_model=model,
|
||||||
@@ -180,16 +240,17 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
|||||||
stream=stream,
|
stream=stream,
|
||||||
extra_args=extra_args,
|
extra_args=extra_args,
|
||||||
):
|
):
|
||||||
yield item
|
return item
|
||||||
return
|
|
||||||
else:
|
else:
|
||||||
return await self._closure(
|
print(req_messages)
|
||||||
|
msg = await self._closure(
|
||||||
query=query,
|
query=query,
|
||||||
req_messages=req_messages,
|
req_messages=req_messages,
|
||||||
use_model=model,
|
use_model=model,
|
||||||
use_funcs=funcs,
|
use_funcs=funcs,
|
||||||
extra_args=extra_args,
|
extra_args=extra_args,
|
||||||
)
|
)
|
||||||
|
return msg
|
||||||
except asyncio.TimeoutError:
|
except asyncio.TimeoutError:
|
||||||
raise errors.RequesterError('请求超时')
|
raise errors.RequesterError('请求超时')
|
||||||
except openai.BadRequestError as e:
|
except openai.BadRequestError as e:
|
||||||
@@ -205,3 +266,51 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
|||||||
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
|
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
|
||||||
except openai.APIError as e:
|
except openai.APIError as e:
|
||||||
raise errors.RequesterError(f'请求错误: {e.message}')
|
raise errors.RequesterError(f'请求错误: {e.message}')
|
||||||
|
|
||||||
|
async def invoke_llm_stream(
|
||||||
|
self,
|
||||||
|
query: core_entities.Query,
|
||||||
|
model: requester.RuntimeLLMModel,
|
||||||
|
messages: typing.List[llm_entities.Message],
|
||||||
|
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||||
|
stream: bool = False,
|
||||||
|
extra_args: dict[str, typing.Any] = {},
|
||||||
|
) -> llm_entities.MessageChunk:
|
||||||
|
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
|
||||||
|
for m in messages:
|
||||||
|
msg_dict = m.dict(exclude_none=True)
|
||||||
|
content = msg_dict.get('content')
|
||||||
|
if isinstance(content, list):
|
||||||
|
# 检查 content 列表中是否每个部分都是文本
|
||||||
|
if all(isinstance(part, dict) and part.get('type') == 'text' for part in content):
|
||||||
|
# 将所有文本部分合并为一个字符串
|
||||||
|
msg_dict['content'] = '\n'.join(part['text'] for part in content)
|
||||||
|
req_messages.append(msg_dict)
|
||||||
|
|
||||||
|
try:
|
||||||
|
if stream:
|
||||||
|
async for item in self._closure_stream(
|
||||||
|
query=query,
|
||||||
|
req_messages=req_messages,
|
||||||
|
use_model=model,
|
||||||
|
use_funcs=funcs,
|
||||||
|
stream=stream,
|
||||||
|
extra_args=extra_args,
|
||||||
|
):
|
||||||
|
yield item
|
||||||
|
|
||||||
|
except asyncio.TimeoutError:
|
||||||
|
raise errors.RequesterError('请求超时')
|
||||||
|
except openai.BadRequestError as e:
|
||||||
|
if 'context_length_exceeded' in e.message:
|
||||||
|
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
|
||||||
|
else:
|
||||||
|
raise errors.RequesterError(f'请求参数错误: {e.message}')
|
||||||
|
except openai.AuthenticationError as e:
|
||||||
|
raise errors.RequesterError(f'无效的 api-key: {e.message}')
|
||||||
|
except openai.NotFoundError as e:
|
||||||
|
raise errors.RequesterError(f'请求路径错误: {e.message}')
|
||||||
|
except openai.RateLimitError as e:
|
||||||
|
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
|
||||||
|
except openai.APIError as e:
|
||||||
|
raise errors.RequesterError(f'请求错误: {e.message}')
|
||||||
@@ -24,25 +24,30 @@ class LocalAgentRunner(runner.RequestRunner):
|
|||||||
pending_tool_calls = []
|
pending_tool_calls = []
|
||||||
|
|
||||||
req_messages = query.prompt.messages.copy() + query.messages.copy() + [query.user_message]
|
req_messages = query.prompt.messages.copy() + query.messages.copy() + [query.user_message]
|
||||||
|
try:
|
||||||
is_stream = query.adapter.is_stream_output_supported()
|
is_stream = query.adapter.is_stream
|
||||||
|
except AttributeError:
|
||||||
|
is_stream = False
|
||||||
# while True:
|
# while True:
|
||||||
# pass
|
# pass
|
||||||
if not is_stream:
|
if not is_stream:
|
||||||
# 非流式输出,直接请求
|
# 非流式输出,直接请求
|
||||||
|
# print(123)
|
||||||
msg = await query.use_llm_model.requester.invoke_llm(
|
msg = await query.use_llm_model.requester.invoke_llm(
|
||||||
query,
|
query,
|
||||||
query.use_llm_model,
|
query.use_llm_model,
|
||||||
req_messages,
|
req_messages,
|
||||||
query.use_funcs,
|
query.use_funcs,
|
||||||
|
is_stream,
|
||||||
extra_args=query.use_llm_model.model_entity.extra_args,
|
extra_args=query.use_llm_model.model_entity.extra_args,
|
||||||
)
|
)
|
||||||
yield msg
|
yield msg
|
||||||
final_msg = msg
|
final_msg = msg
|
||||||
|
print(final_msg)
|
||||||
else:
|
else:
|
||||||
# 流式输出,需要处理工具调用
|
# 流式输出,需要处理工具调用
|
||||||
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
|
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
|
||||||
async for msg in await query.use_llm_model.requester.invoke_llm(
|
async for msg in query.use_llm_model.requester.invoke_llm_stream(
|
||||||
query,
|
query,
|
||||||
query.use_llm_model,
|
query.use_llm_model,
|
||||||
req_messages,
|
req_messages,
|
||||||
@@ -51,20 +56,20 @@ class LocalAgentRunner(runner.RequestRunner):
|
|||||||
extra_args=query.use_llm_model.model_entity.extra_args,
|
extra_args=query.use_llm_model.model_entity.extra_args,
|
||||||
):
|
):
|
||||||
yield msg
|
yield msg
|
||||||
if msg.tool_calls:
|
# if msg.tool_calls:
|
||||||
for tool_call in msg.tool_calls:
|
# for tool_call in msg.tool_calls:
|
||||||
if tool_call.id not in tool_calls_map:
|
# if tool_call.id not in tool_calls_map:
|
||||||
tool_calls_map[tool_call.id] = llm_entities.ToolCall(
|
# tool_calls_map[tool_call.id] = llm_entities.ToolCall(
|
||||||
id=tool_call.id,
|
# id=tool_call.id,
|
||||||
type=tool_call.type,
|
# type=tool_call.type,
|
||||||
function=llm_entities.FunctionCall(
|
# function=llm_entities.FunctionCall(
|
||||||
name=tool_call.function.name if tool_call.function else '',
|
# name=tool_call.function.name if tool_call.function else '',
|
||||||
arguments=''
|
# arguments=''
|
||||||
),
|
# ),
|
||||||
)
|
# )
|
||||||
if tool_call.function and tool_call.function.arguments:
|
# if tool_call.function and tool_call.function.arguments:
|
||||||
# 流式处理中,工具调用参数可能分多个chunk返回,需要追加而不是覆盖
|
# # 流式处理中,工具调用参数可能分多个chunk返回,需要追加而不是覆盖
|
||||||
tool_calls_map[tool_call.id].function.arguments += tool_call.function.arguments
|
# tool_calls_map[tool_call.id].function.arguments += tool_call.function.arguments
|
||||||
final_msg = llm_entities.Message(
|
final_msg = llm_entities.Message(
|
||||||
role=msg.role,
|
role=msg.role,
|
||||||
content=msg.all_content,
|
content=msg.all_content,
|
||||||
@@ -105,7 +110,7 @@ class LocalAgentRunner(runner.RequestRunner):
|
|||||||
|
|
||||||
if is_stream:
|
if is_stream:
|
||||||
tool_calls_map = {}
|
tool_calls_map = {}
|
||||||
async for msg in await query.use_llm_model.requester.invoke_llm(
|
async for msg in await query.use_llm_model.requester.invoke_llm_stream(
|
||||||
query,
|
query,
|
||||||
query.use_llm_model,
|
query.use_llm_model,
|
||||||
req_messages,
|
req_messages,
|
||||||
@@ -130,10 +135,11 @@ class LocalAgentRunner(runner.RequestRunner):
|
|||||||
tool_calls_map[tool_call.id].function.arguments += tool_call.function.arguments
|
tool_calls_map[tool_call.id].function.arguments += tool_call.function.arguments
|
||||||
final_msg = llm_entities.Message(
|
final_msg = llm_entities.Message(
|
||||||
role=msg.role,
|
role=msg.role,
|
||||||
content=all_content,
|
content=msg.all_content,
|
||||||
tool_calls=list(tool_calls_map.values()),
|
tool_calls=list(tool_calls_map.values()),
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
|
print("非流式")
|
||||||
# 处理完所有调用,再次请求
|
# 处理完所有调用,再次请求
|
||||||
msg = await query.use_llm_model.requester.invoke_llm(
|
msg = await query.use_llm_model.requester.invoke_llm(
|
||||||
query,
|
query,
|
||||||
|
|||||||
Reference in New Issue
Block a user