Merge branch 'master' into rc/new-plugin

This commit is contained in:
Junyan Qin (Chin)
2025-09-12 23:02:51 +08:00
committed by GitHub
15 changed files with 693 additions and 196 deletions

View File

@@ -36,6 +36,6 @@ class RequestRunner(abc.ABC):
self.pipeline_config = pipeline_config
@abc.abstractmethod
async def run(self, query: pipeline_query.Query) -> typing.AsyncGenerator[provider_message.Message, None]:
async def run(self, query: core_entities.Query) -> typing.AsyncGenerator[llm_entities.Message | llm_entities.MessageChunk, None]:
"""运行请求"""
pass
pass

View File

@@ -0,0 +1,180 @@
from __future__ import annotations
import typing
import json
import httpx
import uuid
import traceback
from .. import runner
from ...core import app, entities as core_entities
from .. import entities as llm_entities
@runner.runner_class('langflow-api')
class LangflowAPIRunner(runner.RequestRunner):
"""Langflow API 对话请求器"""
def __init__(self, ap: app.Application, pipeline_config: dict):
self.ap = ap
self.pipeline_config = pipeline_config
async def _build_request_payload(self, query: core_entities.Query) -> dict:
"""构建请求负载
Args:
query: 用户查询对象
Returns:
dict: 请求负载
"""
# 获取用户消息文本
user_message_text = ''
if isinstance(query.user_message.content, str):
user_message_text = query.user_message.content
elif isinstance(query.user_message.content, list):
for item in query.user_message.content:
if item.type == 'text':
user_message_text += item.text
# 从配置中获取 input_type 和 output_type如果未配置则使用默认值
input_type = self.pipeline_config['ai']['langflow-api'].get('input_type', 'chat')
output_type = self.pipeline_config['ai']['langflow-api'].get('output_type', 'chat')
# 构建基本负载
payload = {
'output_type': output_type,
'input_type': input_type,
'input_value': user_message_text,
'session_id': str(uuid.uuid4()),
}
# 如果配置中有tweaks则添加到负载中
tweaks = json.loads(self.pipeline_config['ai']['langflow-api'].get('tweaks'))
if tweaks:
payload['tweaks'] = tweaks
return payload
async def run(
self, query: core_entities.Query
) -> typing.AsyncGenerator[llm_entities.Message | llm_entities.MessageChunk, None]:
"""运行请求
Args:
query: 用户查询对象
Yields:
Message: 回复消息
"""
# 检查是否支持流式输出
is_stream = False
try:
is_stream = await query.adapter.is_stream_output_supported()
except AttributeError:
is_stream = False
# 从配置中获取API参数
base_url = self.pipeline_config['ai']['langflow-api']['base-url']
api_key = self.pipeline_config['ai']['langflow-api']['api-key']
flow_id = self.pipeline_config['ai']['langflow-api']['flow-id']
# 构建API URL
url = f'{base_url.rstrip("/")}/api/v1/run/{flow_id}'
# 构建请求负载
payload = await self._build_request_payload(query)
# 设置请求头
headers = {'Content-Type': 'application/json', 'x-api-key': api_key}
# 发送请求
async with httpx.AsyncClient() as client:
if is_stream:
# 流式请求
async with client.stream('POST', url, json=payload, headers=headers, timeout=120.0) as response:
print(response)
response.raise_for_status()
accumulated_content = ''
message_count = 0
async for line in response.aiter_lines():
data_str = line
if data_str.startswith('data: '):
data_str = data_str[6:] # 移除 "data: " 前缀
try:
data = json.loads(data_str)
# 提取消息内容
message_text = ''
if 'outputs' in data and len(data['outputs']) > 0:
output = data['outputs'][0]
if 'outputs' in output and len(output['outputs']) > 0:
inner_output = output['outputs'][0]
if 'outputs' in inner_output and 'message' in inner_output['outputs']:
message_data = inner_output['outputs']['message']
if 'message' in message_data:
message_text = message_data['message']
# 如果没有找到消息,尝试其他可能的路径
if not message_text and 'messages' in data:
messages = data['messages']
if messages and len(messages) > 0:
message_text = messages[0].get('message', '')
if message_text:
# 更新累积内容
accumulated_content = message_text
message_count += 1
# 每8条消息或有新内容时生成一个chunk
if message_count % 8 == 0 or len(message_text) > 0:
yield llm_entities.MessageChunk(
role='assistant', content=accumulated_content, is_final=False
)
except json.JSONDecodeError:
# 如果不是JSON跳过这一行
traceback.print_exc()
continue
# 发送最终消息
yield llm_entities.MessageChunk(role='assistant', content=accumulated_content, is_final=True)
else:
# 非流式请求
response = await client.post(url, json=payload, headers=headers, timeout=120.0)
response.raise_for_status()
# 解析响应
response_data = response.json()
# 提取消息内容
# 根据Langflow API文档响应结构可能在outputs[0].outputs[0].outputs.message.message中
message_text = ''
if 'outputs' in response_data and len(response_data['outputs']) > 0:
output = response_data['outputs'][0]
if 'outputs' in output and len(output['outputs']) > 0:
inner_output = output['outputs'][0]
if 'outputs' in inner_output and 'message' in inner_output['outputs']:
message_data = inner_output['outputs']['message']
if 'message' in message_data:
message_text = message_data['message']
# 如果没有找到消息,尝试其他可能的路径
if not message_text and 'messages' in response_data:
messages = response_data['messages']
if messages and len(messages) > 0:
message_text = messages[0].get('message', '')
# 如果仍然没有找到消息,返回完整响应的字符串表示
if not message_text:
message_text = json.dumps(response_data, ensure_ascii=False, indent=2)
# 生成回复消息
if is_stream:
yield llm_entities.MessageChunk(role='assistant', content=message_text, is_final=True)
else:
reply_message = llm_entities.Message(role='assistant', content=message_text)
yield reply_message