feat: add jiekou.ai requester

This commit is contained in:
Junyan Qin
2025-11-10 00:22:10 +08:00
parent 8c8702c6c9
commit 922ddd47f4
3 changed files with 246 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 415 B

View File

@@ -0,0 +1,208 @@
from __future__ import annotations
import openai
import typing
from . import chatcmpl
from .. import requester
import openai.types.chat.chat_completion as chat_completion
import re
import langbot_plugin.api.entities.builtin.provider.message as provider_message
import langbot_plugin.api.entities.builtin.pipeline.query as pipeline_query
import langbot_plugin.api.entities.builtin.resource.tool as resource_tool
class JieKouAIChatCompletions(chatcmpl.OpenAIChatCompletions):
"""接口 AI ChatCompletion API 请求器"""
client: openai.AsyncClient
default_config: dict[str, typing.Any] = {
'base_url': 'https://api.jiekou.ai/openai',
'timeout': 120,
}
is_think: bool = False
async def _make_msg(
self,
chat_completion: chat_completion.ChatCompletion,
remove_think: bool,
) -> provider_message.Message:
chatcmpl_message = chat_completion.choices[0].message.model_dump()
# print(chatcmpl_message.keys(), chatcmpl_message.values())
# 确保 role 字段存在且不为 None
if 'role' not in chatcmpl_message or chatcmpl_message['role'] is None:
chatcmpl_message['role'] = 'assistant'
reasoning_content = chatcmpl_message['reasoning_content'] if 'reasoning_content' in chatcmpl_message else None
# deepseek的reasoner模型
chatcmpl_message['content'] = await self._process_thinking_content(
chatcmpl_message['content'], reasoning_content, remove_think
)
# 移除 reasoning_content 字段,避免传递给 Message
if 'reasoning_content' in chatcmpl_message:
del chatcmpl_message['reasoning_content']
message = provider_message.Message(**chatcmpl_message)
return message
async def _process_thinking_content(
self,
content: str,
reasoning_content: str = None,
remove_think: bool = False,
) -> tuple[str, str]:
"""处理思维链内容
Args:
content: 原始内容
reasoning_content: reasoning_content 字段内容
remove_think: 是否移除思维链
Returns:
处理后的内容
"""
if remove_think:
content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL)
else:
if reasoning_content is not None:
content = '<think>\n' + reasoning_content + '\n</think>\n' + content
return content
async def _make_msg_chunk(
self,
delta: dict[str, typing.Any],
idx: int,
) -> provider_message.MessageChunk:
# 处理流式chunk和完整响应的差异
# print(chat_completion.choices[0])
# 确保 role 字段存在且不为 None
if 'role' not in delta or delta['role'] is None:
delta['role'] = 'assistant'
reasoning_content = delta['reasoning_content'] if 'reasoning_content' in delta else None
delta['content'] = '' if delta['content'] is None else delta['content']
# print(reasoning_content)
# deepseek的reasoner模型
if reasoning_content is not None:
delta['content'] += reasoning_content
message = provider_message.MessageChunk(**delta)
return message
async def _closure_stream(
self,
query: pipeline_query.Query,
req_messages: list[dict],
use_model: requester.RuntimeLLMModel,
use_funcs: list[resource_tool.LLMTool] = None,
extra_args: dict[str, typing.Any] = {},
remove_think: bool = False,
) -> provider_message.Message | typing.AsyncGenerator[provider_message.MessageChunk, None]:
self.client.api_key = use_model.token_mgr.get_token()
args = {}
args['model'] = use_model.model_entity.name
if use_funcs:
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
if tools:
args['tools'] = tools
# 设置此次请求中的messages
messages = req_messages.copy()
# 检查vision
for msg in messages:
if 'content' in msg and isinstance(msg['content'], list):
for me in msg['content']:
if me['type'] == 'image_base64':
me['image_url'] = {'url': me['image_base64']}
me['type'] = 'image_url'
del me['image_base64']
args['messages'] = messages
args['stream'] = True
# tool_calls_map: dict[str, provider_message.ToolCall] = {}
chunk_idx = 0
thinking_started = False
thinking_ended = False
role = 'assistant' # 默认角色
async for chunk in self._req_stream(args, extra_body=extra_args):
# 解析 chunk 数据
if hasattr(chunk, 'choices') and chunk.choices:
choice = chunk.choices[0]
delta = choice.delta.model_dump() if hasattr(choice, 'delta') else {}
finish_reason = getattr(choice, 'finish_reason', None)
else:
delta = {}
finish_reason = None
# 从第一个 chunk 获取 role后续使用这个 role
if 'role' in delta and delta['role']:
role = delta['role']
# 获取增量内容
delta_content = delta.get('content', '')
# reasoning_content = delta.get('reasoning_content', '')
if remove_think:
if delta['content'] is not None:
if '<think>' in delta['content'] and not thinking_started and not thinking_ended:
thinking_started = True
continue
elif delta['content'] == r'</think>' and not thinking_ended:
thinking_ended = True
continue
elif thinking_ended and delta['content'] == '\n\n' and thinking_started:
thinking_started = False
continue
elif thinking_started and not thinking_ended:
continue
# delta_tool_calls = None
if delta.get('tool_calls'):
for tool_call in delta['tool_calls']:
if tool_call['id'] and tool_call['function']['name']:
tool_id = tool_call['id']
tool_name = tool_call['function']['name']
if tool_call['id'] is None:
tool_call['id'] = tool_id
if tool_call['function']['name'] is None:
tool_call['function']['name'] = tool_name
if tool_call['function']['arguments'] is None:
tool_call['function']['arguments'] = ''
if tool_call['type'] is None:
tool_call['type'] = 'function'
# 跳过空的第一个 chunk只有 role 没有内容)
if chunk_idx == 0 and not delta_content and not delta.get('tool_calls'):
chunk_idx += 1
continue
# 构建 MessageChunk - 只包含增量内容
chunk_data = {
'role': role,
'content': delta_content if delta_content else None,
'tool_calls': delta.get('tool_calls'),
'is_final': bool(finish_reason),
}
# 移除 None 值
chunk_data = {k: v for k, v in chunk_data.items() if v is not None}
yield provider_message.MessageChunk(**chunk_data)
chunk_idx += 1

View File

@@ -0,0 +1,38 @@
apiVersion: v1
kind: LLMAPIRequester
metadata:
name: jiekouai-chat-completions
label:
en_US: JieKou AI
zh_Hans: 接口 AI
icon: jiekouai.png
spec:
config:
- name: base_url
label:
en_US: Base URL
zh_Hans: 基础 URL
type: string
required: true
default: "https://api.jiekou.ai/openai"
- name: args
label:
en_US: Args
zh_Hans: 附加参数
type: object
required: true
default: {}
- name: timeout
label:
en_US: Timeout
zh_Hans: 超时时间
type: int
required: true
default: 120
support_type:
- llm
- text-embedding
execution:
python:
path: ./jiekouaichatcmpl.py
attr: JieKouAIChatCompletions