fix:del some print ,and amend respback on stream judge ,and del in dingtalk this is_stream_output_supported() use

This commit is contained in:
Dong_master
2025-07-29 23:09:02 +08:00
committed by Junyan Qin
parent 074d359c8e
commit a9776b7b53
10 changed files with 127 additions and 186 deletions

View File

@@ -39,11 +39,9 @@ class SendResponseBackStage(stage.PipelineStage):
quote_origin = query.pipeline_config['output']['misc']['quote-origin']
has_chunks = any(isinstance(msg, llm_entities.MessageChunk) for msg in query.resp_messages)
print(has_chunks)
if has_chunks and hasattr(query.adapter,'reply_message_chunk'):
# has_chunks = any(isinstance(msg, llm_entities.MessageChunk) for msg in query.resp_messages)
if await query.adapter.is_stream_output_supported():
is_final = [msg.is_final for msg in query.resp_messages][0]
print(is_final)
await query.adapter.reply_message_chunk(
message_source=query.message_event,
message_id=query.resp_messages[-1].resp_message_id,
@@ -58,10 +56,6 @@ class SendResponseBackStage(stage.PipelineStage):
quote_origin=quote_origin,
)
# await query.adapter.reply_message(
# message_source=query.message_event,
# message=query.resp_message_chain[-1],
# quote_origin=quote_origin,
# )
return entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)

View File

@@ -25,7 +25,6 @@ class MessagePlatformAdapter(metaclass=abc.ABCMeta):
logger: EventLogger
is_stream: bool
def __init__(self, config: dict, ap: app.Application, logger: EventLogger):
"""初始化适配器
@@ -70,18 +69,23 @@ class MessagePlatformAdapter(metaclass=abc.ABCMeta):
message: platform_message.MessageChain,
quote_origin: bool = False,
is_final: bool = False,
):
):
"""回复消息(流式输出)
Args:
message_source (platform.types.MessageEvent): 消息源事件
message_id (int): 消息ID
message (platform.types.MessageChain): 消息链
quote_origin (bool, optional): 是否引用原消息. Defaults to False.
is_final (bool, optional): 流式是否结束. Defaults to False.
"""
raise NotImplementedError
async def create_message_card(self,message_id,event):
'''创建卡片消息'''
async def create_message_card(self, message_id:typing.Type[str,int], event:platform_events.MessageEvent) -> bool:
"""创建卡片消息
Args:
message_id (str): 消息ID
event (platform_events.MessageEvent): 消息源事件
"""
return False
async def is_muted(self, group_id: int) -> bool:
@@ -118,10 +122,8 @@ class MessagePlatformAdapter(metaclass=abc.ABCMeta):
"""异步运行"""
raise NotImplementedError
async def is_stream_output_supported(self) -> bool:
"""是否支持流式输出"""
self.is_stream = False
return False
async def kill(self) -> bool:

View File

@@ -148,7 +148,7 @@ class DingTalkAdapter(adapter.MessagePlatformAdapter):
message: platform_message.MessageChain,
quote_origin: bool = False,
is_final: bool = False,
):
):
event = await DingTalkEventConverter.yiri2target(
message_source,
)
@@ -158,13 +158,12 @@ class DingTalkAdapter(adapter.MessagePlatformAdapter):
content, at = await DingTalkMessageConverter.yiri2target(message)
card_instance,card_instance_id = self.card_instance_id_dict[message_id]
card_instance, card_instance_id = self.card_instance_id_dict[message_id]
# print(card_instance_id)
await self.bot.send_card_message(card_instance,card_instance_id,content,is_final)
await self.bot.send_card_message(card_instance, card_instance_id, content, is_final)
if is_final:
self.card_instance_id_dict.pop(message_id)
async def send_message(self, target_type: str, target_id: str, message: platform_message.MessageChain):
content = await DingTalkMessageConverter.yiri2target(message)
if target_type == 'person':
@@ -174,11 +173,11 @@ class DingTalkAdapter(adapter.MessagePlatformAdapter):
async def is_stream_output_supported(self) -> bool:
is_stream = False
if self.config.get("enable-stream-reply", None):
if self.config.get('enable-stream-reply', None):
is_stream = True
return is_stream
async def create_message_card(self,message_id,event):
async def create_message_card(self, message_id, event):
card_template_id = self.config['card_template_id']
incoming_message = event.source_platform_object.incoming_message
# message_id = incoming_message.message_id
@@ -186,7 +185,6 @@ class DingTalkAdapter(adapter.MessagePlatformAdapter):
self.card_instance_id_dict[message_id] = (card_instance, card_instance_id)
return True
def register_listener(
self,
event_type: typing.Type[platform_events.Event],
@@ -194,7 +192,6 @@ class DingTalkAdapter(adapter.MessagePlatformAdapter):
):
async def on_message(event: DingTalkEvent):
try:
await self.is_stream_output_supported()
return await callback(
await self.event_converter.target2yiri(event, self.config['robot_name']),
self,

View File

@@ -9,7 +9,6 @@ import re
import base64
import uuid
import json
import time
import datetime
import hashlib
from Crypto.Cipher import AES
@@ -345,11 +344,10 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
quart_app: quart.Quart
ap: app.Application
message_id_to_card_id: typing.Dict[str, typing.Tuple[str, int]]
card_id_dict: dict[str, str]
card_id_dict: dict[str, str] # 消息id到卡片id的映射便于创建卡片后的发送消息到指定卡片
seq: int
seq: int # 用于在发送卡片消息中识别消息顺序直接以seq作为标识
def __init__(self, config: dict, ap: app.Application, logger: EventLogger):
self.config = config
@@ -357,10 +355,9 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
self.logger = logger
self.quart_app = quart.Quart(__name__)
self.listeners = {}
self.message_id_to_card_id = {}
self.card_id_dict = {}
self.seq = 1
self.card_id_time = {}
@self.quart_app.route('/lark/callback', methods=['POST'])
async def lark_callback():
@@ -405,15 +402,7 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
await self.logger.error(f'Error in lark callback: {traceback.format_exc()}')
return {'code': 500, 'message': 'error'}
async def on_message(event: lark_oapi.im.v1.P2ImMessageReceiveV1):
lb_event = await self.event_converter.target2yiri(event, self.api_client)
await self.listeners[type(lb_event)](lb_event, self)
@@ -435,51 +424,49 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
async def is_stream_output_supported(self) -> bool:
is_stream = False
if self.config.get("enable-stream-reply", None):
if self.config.get('enable-stream-reply', None):
is_stream = True
return is_stream
async def create_card_id(self,message_id):
async def create_card_id(self, message_id):
try:
is_stream = await self.is_stream_output_supported()
if is_stream:
self.ap.logger.debug('飞书支持stream输出,创建卡片......')
self.ap.logger.debug('飞书支持stream输出,创建卡片......')
card_data = {"schema": "2.0", "header": {"title": {"content": "bot", "tag": "plain_text"}},
"body": {"elements": [
{"tag": "markdown", "content": "[思考中.....]", "element_id": "markdown_1"}]},
"config": {"streaming_mode": True,
"streaming_config": {"print_strategy": "delay"}}} # delay / fast
card_data = {
'schema': '2.0',
'header': {'title': {'content': 'bot', 'tag': 'plain_text'}},
'body': {'elements': [{'tag': 'markdown', 'content': '[思考中.....]', 'element_id': 'markdown_1'}]},
'config': {'streaming_mode': True, 'streaming_config': {'print_strategy': 'delay'}},
} # delay / fast 创建卡片模板delay 延迟打印fast 实时打印,可以自定义更好看的消息模板
request: CreateCardRequest = CreateCardRequest.builder() \
.request_body(
CreateCardRequestBody.builder()
.type("card_json")
.data(json.dumps(card_data)) \
.build()
).build()
request: CreateCardRequest = (
CreateCardRequest.builder()
.request_body(CreateCardRequestBody.builder().type('card_json').data(json.dumps(card_data)).build())
.build()
)
# 发起请求
response: CreateCardResponse = self.api_client.cardkit.v1.card.create(request)
# 发起请求
response: CreateCardResponse = self.api_client.cardkit.v1.card.create(request)
# 处理失败返回
if not response.success():
raise Exception(
f"client.cardkit.v1.card.create failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}")
# 处理失败返回
if not response.success():
raise Exception(
f'client.cardkit.v1.card.create failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}'
)
self.ap.logger.debug(f'飞书卡片创建成功,卡片ID: {response.data.card_id}')
self.card_id_dict[message_id] = response.data.card_id
self.ap.logger.debug(f'飞书卡片创建成功,卡片ID: {response.data.card_id}')
self.card_id_dict[message_id] = response.data.card_id
card_id = response.data.card_id
card_id = response.data.card_id
return card_id
except Exception as e:
self.ap.logger.error(f'飞书卡片创建失败,错误信息: {e}')
async def create_message_card(self,message_id,event) -> str:
async def create_message_card(self, message_id, event) -> str:
"""
创建卡片消息。
使用卡片消息是因为普通消息更新次数有限制,而大模型流式返回结果可能很多而超过限制,而飞书卡片没有这个限制
使用卡片消息是因为普通消息更新次数有限制,而大模型流式返回结果可能很多而超过限制,而飞书卡片没有这个限制api免费次数有限
"""
# message_id = event.message_chain.message_id
@@ -487,7 +474,7 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
content = {
'type': 'card',
'data': {'card_id': card_id, 'template_variable': {'content': 'Thinking...'}},
}
} # 当收到消息时发送消息模板,可添加模板变量,详情查看飞书中接口文档
request: ReplyMessageRequest = (
ReplyMessageRequest.builder()
.message_id(event.message_chain.message_id)
@@ -545,7 +532,6 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
f'client.im.v1.message.reply failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}'
)
async def reply_message_chunk(
self,
message_source: platform_events.MessageEvent,
@@ -557,56 +543,50 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
"""
回复消息变成更新卡片消息
"""
lark_message = await self.message_converter.yiri2target(message, self.api_client)
self.seq += 1
if (self.seq - 1) % 8 == 0 or is_final:
lark_message = await self.message_converter.yiri2target(message, self.api_client)
text_message = ''
for ele in lark_message[0]:
if ele['tag'] == 'text':
text_message += ele['text']
elif ele['tag'] == 'md':
text_message += ele['text']
print(text_message)
text_message = ''
for ele in lark_message[0]:
if ele['tag'] == 'text':
text_message += ele['text']
elif ele['tag'] == 'md':
text_message += ele['text']
content = {
'type': 'card_json',
'data': {'card_id': self.card_id_dict[message_id], 'elements': {'content': text_message}},
}
# content = {
# 'type': 'card_json',
# 'data': {'card_id': self.card_id_dict[message_id], 'elements': {'content': text_message}},
# }
request: ContentCardElementRequest = ContentCardElementRequest.builder() \
.card_id(self.card_id_dict[message_id]) \
.element_id("markdown_1") \
.request_body(ContentCardElementRequestBody.builder()
# .uuid("a0d69e20-1dd1-458b-k525-dfeca4015204")
.content(text_message)
.sequence(self.seq)
.build()) \
.build()
if is_final:
self.seq = 1
self.card_id_dict.pop(message_id)
# 发起请求
response: ContentCardElementResponse = self.api_client.cardkit.v1.card_element.content(request)
# 处理失败返回
if not response.success():
raise Exception(
f'client.im.v1.message.patch failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}'
request: ContentCardElementRequest = (
ContentCardElementRequest.builder()
.card_id(self.card_id_dict[message_id])
.element_id('markdown_1')
.request_body(
ContentCardElementRequestBody.builder()
# .uuid("a0d69e20-1dd1-458b-k525-dfeca4015204")
.content(text_message)
.sequence(self.seq)
.build()
)
.build()
)
return
if is_final:
self.seq = 1 # 消息回复结束之后重置seq
self.card_id_dict.pop(message_id) # 清理已经使用过的卡片
# 发起请求
response: ContentCardElementResponse = self.api_client.cardkit.v1.card_element.content(request)
# 处理失败返回
if not response.success():
raise Exception(
f'client.im.v1.message.patch failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}'
)
return
async def is_muted(self, group_id: int) -> bool:
return False

View File

@@ -167,7 +167,7 @@ class TelegramAdapter(adapter.MessagePlatformAdapter):
await self.listeners[type(lb_event)](lb_event, self)
await self.is_stream_output_supported()
except Exception:
await self.logger.error(f"Error in telegram callback: {traceback.format_exc()}")
await self.logger.error(f'Error in telegram callback: {traceback.format_exc()}')
self.application = ApplicationBuilder().token(self.config['token']).build()
self.bot = self.application.bot
@@ -206,7 +206,6 @@ class TelegramAdapter(adapter.MessagePlatformAdapter):
await self.bot.send_message(**args)
async def reply_message_chunk(
self,
message_source: platform_events.MessageEvent,
@@ -214,8 +213,7 @@ class TelegramAdapter(adapter.MessagePlatformAdapter):
message: platform_message.MessageChain,
quote_origin: bool = False,
is_final: bool = False,
):
):
assert isinstance(message_source.source_platform_object, Update)
components = await TelegramMessageConverter.yiri2target(message, self.bot)
args = {}
@@ -240,7 +238,6 @@ class TelegramAdapter(adapter.MessagePlatformAdapter):
if self.config['markdown_card'] is True:
args['parse_mode'] = 'MarkdownV2'
send_msg = await self.bot.send_message(**args)
send_msg_id = send_msg.message_id
self.msg_stream_id[message_id] = send_msg_id
@@ -264,16 +261,12 @@ class TelegramAdapter(adapter.MessagePlatformAdapter):
if is_final:
self.msg_stream_id.pop(message_id)
async def is_stream_output_supported(self) -> bool:
is_stream = False
if self.config.get("enable-stream-reply", None):
if self.config.get('enable-stream-reply', None):
is_stream = True
self.is_stream = is_stream
return is_stream
async def is_muted(self, group_id: int) -> bool:
return False

View File

@@ -17,14 +17,13 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
"""OpenAI ChatCompletion API 请求器"""
client: openai.AsyncClient
is_content:bool
is_content: bool
default_config: dict[str, typing.Any] = {
'base_url': 'https://api.openai.com/v1',
'timeout': 120,
}
async def initialize(self):
self.client = openai.AsyncClient(
api_key='',
@@ -46,7 +45,6 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
args: dict,
extra_body: dict = {},
) -> chat_completion.ChatCompletion:
async for chunk in await self.client.chat.completions.create(**args, extra_body=extra_body):
yield chunk
@@ -66,11 +64,12 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
# deepseek的reasoner模型
if pipeline_config['trigger'].get('misc', '').get('remove_think'):
pass
else:
if reasoning_content is not None :
chatcmpl_message['content'] = '<think>\n' + reasoning_content + '\n</think>\n' + chatcmpl_message['content']
if reasoning_content is not None:
chatcmpl_message['content'] = (
'<think>\n' + reasoning_content + '\n</think>\n' + chatcmpl_message['content']
)
message = llm_entities.Message(**chatcmpl_message)
@@ -82,7 +81,6 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
chat_completion: chat_completion.ChatCompletion,
idx: int,
) -> llm_entities.MessageChunk:
# 处理流式chunk和完整响应的差异
# print(chat_completion.choices[0])
if hasattr(chat_completion, 'choices'):
@@ -98,7 +96,6 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
if 'role' not in delta or delta['role'] is None:
delta['role'] = 'assistant'
reasoning_content = delta['reasoning_content'] if 'reasoning_content' in delta else None
delta['content'] = '' if delta['content'] is None else delta['content']
@@ -106,13 +103,13 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
# deepseek的reasoner模型
if pipeline_config['trigger'].get('misc', '').get('remove_think'):
if reasoning_content is not None :
if reasoning_content is not None:
pass
else:
delta['content'] = delta['content']
else:
if reasoning_content is not None and idx == 0:
delta['content'] += f'<think>\n{reasoning_content}'
delta['content'] += f'<think>\n{reasoning_content}'
elif reasoning_content is None:
if self.is_content:
delta['content'] = delta['content']
@@ -122,7 +119,6 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
else:
delta['content'] += reasoning_content
message = llm_entities.MessageChunk(**delta)
return message
@@ -135,9 +131,10 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
use_funcs: list[tools_entities.LLMFunction] = None,
stream: bool = False,
extra_args: dict[str, typing.Any] = {},
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
) ->llm_entities.MessageChunk:
self.client.api_key = use_model.token_mgr.get_token()
args = {}
args['model'] = use_model.model_entity.name
@@ -163,14 +160,14 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
if stream:
current_content = ''
args["stream"] = True
args['stream'] = True
chunk_idx = 0
self.is_content = False
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
pipeline_config = query.pipeline_config
async for chunk in self._req_stream(args, extra_body=extra_args):
# 处理流式消息
delta_message = await self._make_msg_chunk(pipeline_config,chunk,chunk_idx)
delta_message = await self._make_msg_chunk(pipeline_config, chunk, chunk_idx)
if delta_message.content:
current_content += delta_message.content
delta_message.content = current_content
@@ -182,15 +179,13 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
id=tool_call.id,
type=tool_call.type,
function=llm_entities.FunctionCall(
name=tool_call.function.name if tool_call.function else '',
arguments=''
name=tool_call.function.name if tool_call.function else '', arguments=''
),
)
if tool_call.function and tool_call.function.arguments:
# 流式处理中工具调用参数可能分多个chunk返回需要追加而不是覆盖
tool_calls_map[tool_call.id].function.arguments += tool_call.function.arguments
chunk_idx += 1
chunk_choices = getattr(chunk, 'choices', None)
if chunk_choices and getattr(chunk_choices[0], 'finish_reason', None):
@@ -198,11 +193,9 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
delta_message.content = current_content
if chunk_idx % 64 == 0 or delta_message.is_final:
yield delta_message
# return
async def _closure(
self,
query: core_entities.Query,
@@ -211,7 +204,7 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
use_funcs: list[tools_entities.LLMFunction] = None,
stream: bool = False,
extra_args: dict[str, typing.Any] = {},
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
) -> llm_entities.Message:
self.client.api_key = use_model.token_mgr.get_token()
args = {}
@@ -237,22 +230,15 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
args['messages'] = messages
# 发送请求
resp = await self._req(args, extra_body=extra_args)
# 处理请求结果
pipeline_config = query.pipeline_config
message = await self._make_msg(resp,pipeline_config)
message = await self._make_msg(resp, pipeline_config)
return message
async def invoke_llm(
self,
query: core_entities.Query,
@@ -273,7 +259,6 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
req_messages.append(msg_dict)
try:
msg = await self._closure(
query=query,
req_messages=req_messages,
@@ -334,7 +319,7 @@ class OpenAIChatCompletions(requester.ProviderAPIRequester):
funcs: typing.List[tools_entities.LLMFunction] = None,
stream: bool = False,
extra_args: dict[str, typing.Any] = {},
) -> llm_entities.MessageChunk:
) -> llm_entities.MessageChunk:
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
for m in messages:
msg_dict = m.dict(exclude_none=True)

View File

@@ -55,6 +55,6 @@ class DeepseekChatCompletions(chatcmpl.OpenAIChatCompletions):
raise errors.RequesterError('接口返回为空,请确定模型提供商服务是否正常')
pipeline_config = query.pipeline_config
# 处理请求结果
message = await self._make_msg(resp,pipeline_config)
message = await self._make_msg(resp, pipeline_config)
return message

View File

@@ -185,8 +185,6 @@ class DashScopeAPIRunner(runner.RequestRunner):
# 将参考资料替换到文本中
pending_content = self._replace_references(pending_content, references_dict)
yield llm_entities.Message(
role='assistant',
content=pending_content,
@@ -261,13 +259,11 @@ class DashScopeAPIRunner(runner.RequestRunner):
role='assistant',
content=pending_content,
is_final=is_final,
)
# 保存当前会话的session_id用于下次对话的语境
query.session.using_conversation.uuid = stream_output.get('session_id')
else:
for chunk in response:
if chunk.get('status_code') != 200:

View File

@@ -148,7 +148,6 @@ class DifyServiceAPIRunner(runner.RequestRunner):
if mode == 'workflow':
if chunk['event'] == 'node_finished':
if not is_stream:
if chunk['data']['node_type'] == 'answer':
yield llm_entities.Message(
role='assistant',
@@ -274,7 +273,6 @@ class DifyServiceAPIRunner(runner.RequestRunner):
content=self._try_convert_thinking(pending_agent_message),
)
if chunk['event'] == 'agent_thought':
if chunk['tool'] != '' and chunk['observation'] != '': # 工具调用结果,跳过
continue

View File

@@ -2,7 +2,6 @@ from __future__ import annotations
import json
import copy
from ssl import ALERT_DESCRIPTION_BAD_CERTIFICATE_HASH_VALUE
import typing
from .. import runner
from ...core import entities as core_entities
@@ -30,11 +29,14 @@ class LocalAgentRunner(runner.RequestRunner):
class ToolCallTracker:
"""工具调用追踪器"""
def __init__(self):
self.active_calls: dict[str,dict] = {}
self.active_calls: dict[str, dict] = {}
self.completed_calls: list[llm_entities.ToolCall] = []
async def run(self, query: core_entities.Query) -> typing.AsyncGenerator[llm_entities.Message | llm_entities.MessageChunk, None]:
async def run(
self, query: core_entities.Query
) -> typing.AsyncGenerator[llm_entities.Message | llm_entities.MessageChunk, None]:
"""运行请求"""
pending_tool_calls = []
@@ -89,16 +91,14 @@ class LocalAgentRunner(runner.RequestRunner):
is_stream = query.adapter.is_stream_output_supported()
try:
# print(await query.adapter.is_stream_output_supported())
is_stream = await query.adapter.is_stream_output_supported()
except AttributeError:
is_stream = False
# while True:
# pass
if not is_stream:
# 非流式输出,直接请求
# print(123)
msg = await query.use_llm_model.requester.invoke_llm(
query,
query.use_llm_model,
@@ -108,7 +108,6 @@ class LocalAgentRunner(runner.RequestRunner):
)
yield msg
final_msg = msg
print(final_msg)
else:
# 流式输出,需要处理工具调用
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
@@ -122,27 +121,26 @@ class LocalAgentRunner(runner.RequestRunner):
):
assert isinstance(msg, llm_entities.MessageChunk)
yield msg
# if msg.tool_calls:
# for tool_call in msg.tool_calls:
# if tool_call.id not in tool_calls_map:
# tool_calls_map[tool_call.id] = llm_entities.ToolCall(
# id=tool_call.id,
# type=tool_call.type,
# function=llm_entities.FunctionCall(
# name=tool_call.function.name if tool_call.function else '',
# arguments=''
# ),
# )
# if tool_call.function and tool_call.function.arguments:
# # 流式处理中工具调用参数可能分多个chunk返回需要追加而不是覆盖
# tool_calls_map[tool_call.id].function.arguments += tool_call.function.arguments
if msg.tool_calls:
for tool_call in msg.tool_calls:
if tool_call.id not in tool_calls_map:
tool_calls_map[tool_call.id] = llm_entities.ToolCall(
id=tool_call.id,
type=tool_call.type,
function=llm_entities.FunctionCall(
name=tool_call.function.name if tool_call.function else '',
arguments=''
),
)
if tool_call.function and tool_call.function.arguments:
# 流式处理中工具调用参数可能分多个chunk返回需要追加而不是覆盖
tool_calls_map[tool_call.id].function.arguments += tool_call.function.arguments
final_msg = llm_entities.Message(
role=msg.role,
content=msg.all_content,
tool_calls=list(tool_calls_map.values()),
)
pending_tool_calls = final_msg.tool_calls
req_messages.append(final_msg)
@@ -193,8 +191,7 @@ class LocalAgentRunner(runner.RequestRunner):
id=tool_call.id,
type=tool_call.type,
function=llm_entities.FunctionCall(
name=tool_call.function.name if tool_call.function else '',
arguments=''
name=tool_call.function.name if tool_call.function else '', arguments=''
),
)
if tool_call.function and tool_call.function.arguments:
@@ -206,7 +203,6 @@ class LocalAgentRunner(runner.RequestRunner):
tool_calls=list(tool_calls_map.values()),
)
else:
print("非流式")
# 处理完所有调用,再次请求
msg = await query.use_llm_model.requester.invoke_llm(
query,