mirror of
https://github.com/langbot-app/LangBot.git
synced 2025-11-25 19:37:36 +08:00
Add ModelScope Support
This commit is contained in:
@@ -117,6 +117,7 @@
|
||||
| [阿里云百炼](https://bailian.console.aliyun.com/) | ✅ | 大模型聚合平台, LLMOps 平台 |
|
||||
| [火山方舟](https://console.volcengine.com/ark/region:ark+cn-beijing/model?vendor=Bytedance&view=LIST_VIEW) | ✅ | 大模型聚合平台, LLMOps 平台 |
|
||||
| [MCP](https://modelcontextprotocol.io/) | ✅ | 支持通过 MCP 协议获取工具 |
|
||||
| [ModelScope](https://modelscope.cn/docs/model-service/API-Inference/intro) | ✅ | |
|
||||
|
||||
### TTS
|
||||
|
||||
|
||||
@@ -114,6 +114,7 @@ Directly use the released version to run, see the [Manual Deployment](https://do
|
||||
| [Aliyun Bailian](https://bailian.console.aliyun.com/) | ✅ | LLM gateway(MaaS), LLMOps platform |
|
||||
| [Volc Engine Ark](https://console.volcengine.com/ark/region:ark+cn-beijing/model?vendor=Bytedance&view=LIST_VIEW) | ✅ | LLM gateway(MaaS), LLMOps platform |
|
||||
| [MCP](https://modelcontextprotocol.io/) | ✅ | Support tool access through MCP protocol |
|
||||
| [ModelScope](https://modelscope.cn/docs/model-service/API-Inference/intro) | ✅ | |
|
||||
|
||||
## 🤝 Community Contribution
|
||||
|
||||
|
||||
@@ -113,6 +113,7 @@ LangBotはBTPanelにリストされています。BTPanelをインストール
|
||||
| [Aliyun Bailian](https://bailian.console.aliyun.com/) | ✅ | LLMゲートウェイ(MaaS), LLMOpsプラットフォーム |
|
||||
| [Volc Engine Ark](https://console.volcengine.com/ark/region:ark+cn-beijing/model?vendor=Bytedance&view=LIST_VIEW) | ✅ | LLMゲートウェイ(MaaS), LLMOpsプラットフォーム |
|
||||
| [MCP](https://modelcontextprotocol.io/) | ✅ | MCPプロトコルをサポート |
|
||||
| [ModelScope](https://modelscope.cn/docs/model-service/API-Inference/intro) | ✅ | |
|
||||
|
||||
## 🤝 コミュニティ貢献
|
||||
|
||||
|
||||
30
pkg/core/migrations/m039_modelscope_cfg_completion.py
Normal file
30
pkg/core/migrations/m039_modelscope_cfg_completion.py
Normal file
@@ -0,0 +1,30 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from .. import migration
|
||||
|
||||
|
||||
@migration.migration_class("modelscope-config-completion", 4)
|
||||
class ModelScopeConfigCompletionMigration(migration.Migration):
|
||||
"""OpenAI配置迁移
|
||||
"""
|
||||
|
||||
async def need_migrate(self) -> bool:
|
||||
"""判断当前环境是否需要运行此迁移
|
||||
"""
|
||||
return 'modelscope-chat-completions' not in self.ap.provider_cfg.data['requester'] \
|
||||
or 'modelscope' not in self.ap.provider_cfg.data['keys']
|
||||
|
||||
async def run(self):
|
||||
"""执行迁移
|
||||
"""
|
||||
if 'modelscope-chat-completions' not in self.ap.provider_cfg.data['requester']:
|
||||
self.ap.provider_cfg.data['requester']['modelscope-chat-completions'] = {
|
||||
'base-url': 'https://api.modelscope.cn/v1',
|
||||
'args': {},
|
||||
'timeout': 120,
|
||||
}
|
||||
|
||||
if 'modelscope' not in self.ap.provider_cfg.data['keys']:
|
||||
self.ap.provider_cfg.data['keys']['modelscope'] = []
|
||||
|
||||
await self.ap.provider_cfg.dump_config()
|
||||
@@ -12,7 +12,7 @@ from ..migrations import m020_wecom_config, m021_lark_config, m022_lmstudio_conf
|
||||
from ..migrations import m026_qqofficial_config, m027_wx_official_account_config, m028_aliyun_requester_config
|
||||
from ..migrations import m029_dashscope_app_api_config, m030_lark_config_cmpl, m031_dingtalk_config, m032_volcark_config
|
||||
from ..migrations import m033_dify_thinking_config, m034_gewechat_file_url_config, m035_wxoa_mode, m036_wxoa_loading_message
|
||||
from ..migrations import m037_mcp_config, m038_tg_dingtalk_markdown
|
||||
from ..migrations import m037_mcp_config, m038_tg_dingtalk_markdown, m039_modelscope_cfg_completion
|
||||
|
||||
|
||||
@stage.stage_class("MigrationStage")
|
||||
|
||||
@@ -6,7 +6,7 @@ from . import entities, requester
|
||||
from ...core import app
|
||||
from ...discover import engine
|
||||
from . import token
|
||||
from .requesters import bailianchatcmpl, chatcmpl, anthropicmsgs, moonshotchatcmpl, deepseekchatcmpl, ollamachat, giteeaichatcmpl, volcarkchatcmpl, xaichatcmpl, zhipuaichatcmpl, lmstudiochatcmpl, siliconflowchatcmpl, volcarkchatcmpl
|
||||
from .requesters import bailianchatcmpl, chatcmpl, anthropicmsgs, moonshotchatcmpl, deepseekchatcmpl, ollamachat, giteeaichatcmpl, volcarkchatcmpl, xaichatcmpl, zhipuaichatcmpl, lmstudiochatcmpl, siliconflowchatcmpl, volcarkchatcmpl, modelscopechatcmpl
|
||||
|
||||
FETCH_MODEL_LIST_URL = "https://api.qchatgpt.rockchin.top/api/v2/fetch/model_list"
|
||||
|
||||
|
||||
207
pkg/provider/modelmgr/requesters/modelscopechatcmpl.py
Normal file
207
pkg/provider/modelmgr/requesters/modelscopechatcmpl.py
Normal file
@@ -0,0 +1,207 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import typing
|
||||
import json
|
||||
import base64
|
||||
from typing import AsyncGenerator
|
||||
|
||||
import openai
|
||||
import openai.types.chat.chat_completion as chat_completion
|
||||
import openai.types.chat.chat_completion_message_tool_call as chat_completion_message_tool_call
|
||||
import httpx
|
||||
import aiohttp
|
||||
import async_lru
|
||||
|
||||
from .. import entities, errors, requester
|
||||
from ....core import entities as core_entities, app
|
||||
from ... import entities as llm_entities
|
||||
from ...tools import entities as tools_entities
|
||||
from ....utils import image
|
||||
|
||||
|
||||
class ModelScopeChatCompletions(requester.LLMAPIRequester):
|
||||
"""ModelScope ChatCompletion API 请求器"""
|
||||
|
||||
client: openai.AsyncClient
|
||||
|
||||
requester_cfg: dict
|
||||
|
||||
def __init__(self, ap: app.Application):
|
||||
self.ap = ap
|
||||
|
||||
self.requester_cfg = self.ap.provider_cfg.data['requester']['modelscope-chat-completions']
|
||||
|
||||
async def initialize(self):
|
||||
|
||||
self.client = openai.AsyncClient(
|
||||
api_key="",
|
||||
base_url=self.requester_cfg['base-url'],
|
||||
timeout=self.requester_cfg['timeout'],
|
||||
http_client=httpx.AsyncClient(
|
||||
trust_env=True,
|
||||
timeout=self.requester_cfg['timeout']
|
||||
)
|
||||
)
|
||||
|
||||
async def _req(
|
||||
self,
|
||||
args: dict,
|
||||
) -> chat_completion.ChatCompletion:
|
||||
args["stream"] = True
|
||||
|
||||
chunk = None
|
||||
|
||||
pending_content = ""
|
||||
|
||||
tool_calls = []
|
||||
|
||||
resp_gen: openai.AsyncStream = await self.client.chat.completions.create(**args)
|
||||
|
||||
async for chunk in resp_gen:
|
||||
# print(chunk)
|
||||
if not chunk or not chunk.id or not chunk.choices or not chunk.choices[0] or not chunk.choices[0].delta:
|
||||
continue
|
||||
|
||||
if chunk.choices[0].delta.content is not None:
|
||||
pending_content += chunk.choices[0].delta.content
|
||||
|
||||
if chunk.choices[0].delta.tool_calls is not None:
|
||||
for tool_call in chunk.choices[0].delta.tool_calls:
|
||||
for tc in tool_calls:
|
||||
if tc.index == tool_call.index:
|
||||
tc.function.arguments += tool_call.function.arguments
|
||||
break
|
||||
else:
|
||||
tool_calls.append(tool_call)
|
||||
|
||||
if chunk.choices[0].finish_reason is not None:
|
||||
break
|
||||
|
||||
real_tool_calls = []
|
||||
|
||||
for tc in tool_calls:
|
||||
function = chat_completion_message_tool_call.Function(
|
||||
name=tc.function.name,
|
||||
arguments=tc.function.arguments
|
||||
)
|
||||
real_tool_calls.append(chat_completion_message_tool_call.ChatCompletionMessageToolCall(
|
||||
id=tc.id,
|
||||
function=function,
|
||||
type="function"
|
||||
))
|
||||
|
||||
return chat_completion.ChatCompletion(
|
||||
id=chunk.id,
|
||||
object="chat.completion",
|
||||
created=chunk.created,
|
||||
choices=[
|
||||
chat_completion.Choice(
|
||||
index=0,
|
||||
message=chat_completion.ChatCompletionMessage(
|
||||
role="assistant",
|
||||
content=pending_content,
|
||||
tool_calls=real_tool_calls if len(real_tool_calls) > 0 else None
|
||||
),
|
||||
finish_reason=chunk.choices[0].finish_reason if hasattr(chunk.choices[0], 'finish_reason') and chunk.choices[0].finish_reason is not None else 'stop',
|
||||
logprobs=chunk.choices[0].logprobs,
|
||||
)
|
||||
],
|
||||
model=chunk.model,
|
||||
service_tier=chunk.service_tier if hasattr(chunk, 'service_tier') else None,
|
||||
system_fingerprint=chunk.system_fingerprint if hasattr(chunk, 'system_fingerprint') else None,
|
||||
usage=chunk.usage if hasattr(chunk, 'usage') else None
|
||||
) if chunk else None
|
||||
return await self.client.chat.completions.create(**args)
|
||||
|
||||
async def _make_msg(
|
||||
self,
|
||||
chat_completion: chat_completion.ChatCompletion,
|
||||
) -> llm_entities.Message:
|
||||
chatcmpl_message = chat_completion.choices[0].message.dict()
|
||||
|
||||
# 确保 role 字段存在且不为 None
|
||||
if 'role' not in chatcmpl_message or chatcmpl_message['role'] is None:
|
||||
chatcmpl_message['role'] = 'assistant'
|
||||
|
||||
message = llm_entities.Message(**chatcmpl_message)
|
||||
|
||||
return message
|
||||
|
||||
async def _closure(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
req_messages: list[dict],
|
||||
use_model: entities.LLMModelInfo,
|
||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||
) -> llm_entities.Message:
|
||||
self.client.api_key = use_model.token_mgr.get_token()
|
||||
|
||||
args = self.requester_cfg['args'].copy()
|
||||
args["model"] = use_model.name if use_model.model_name is None else use_model.model_name
|
||||
|
||||
if use_funcs:
|
||||
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
|
||||
|
||||
if tools:
|
||||
args["tools"] = tools
|
||||
|
||||
# 设置此次请求中的messages
|
||||
messages = req_messages.copy()
|
||||
|
||||
# 检查vision
|
||||
for msg in messages:
|
||||
if 'content' in msg and isinstance(msg["content"], list):
|
||||
for me in msg["content"]:
|
||||
if me["type"] == "image_base64":
|
||||
me["image_url"] = {
|
||||
"url": me["image_base64"]
|
||||
}
|
||||
me["type"] = "image_url"
|
||||
del me["image_base64"]
|
||||
|
||||
args["messages"] = messages
|
||||
|
||||
# 发送请求
|
||||
resp = await self._req(args)
|
||||
|
||||
# 处理请求结果
|
||||
message = await self._make_msg(resp)
|
||||
|
||||
return message
|
||||
|
||||
async def call(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
model: entities.LLMModelInfo,
|
||||
messages: typing.List[llm_entities.Message],
|
||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||
) -> llm_entities.Message:
|
||||
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
|
||||
for m in messages:
|
||||
msg_dict = m.dict(exclude_none=True)
|
||||
content = msg_dict.get("content")
|
||||
if isinstance(content, list):
|
||||
# 检查 content 列表中是否每个部分都是文本
|
||||
if all(isinstance(part, dict) and part.get("type") == "text" for part in content):
|
||||
# 将所有文本部分合并为一个字符串
|
||||
msg_dict["content"] = "\n".join(part["text"] for part in content)
|
||||
req_messages.append(msg_dict)
|
||||
|
||||
try:
|
||||
return await self._closure(query=query, req_messages=req_messages, use_model=model, use_funcs=funcs)
|
||||
except asyncio.TimeoutError:
|
||||
raise errors.RequesterError('请求超时')
|
||||
except openai.BadRequestError as e:
|
||||
if 'context_length_exceeded' in e.message:
|
||||
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
|
||||
else:
|
||||
raise errors.RequesterError(f'请求参数错误: {e.message}')
|
||||
except openai.AuthenticationError as e:
|
||||
raise errors.RequesterError(f'无效的 api-key: {e.message}')
|
||||
except openai.NotFoundError as e:
|
||||
raise errors.RequesterError(f'请求路径错误: {e.message}')
|
||||
except openai.RateLimitError as e:
|
||||
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
|
||||
except openai.APIError as e:
|
||||
raise errors.RequesterError(f'请求错误: {e.message}')
|
||||
34
pkg/provider/modelmgr/requesters/modelscopechatcmpl.yaml
Normal file
34
pkg/provider/modelmgr/requesters/modelscopechatcmpl.yaml
Normal file
@@ -0,0 +1,34 @@
|
||||
apiVersion: v1
|
||||
kind: LLMAPIRequester
|
||||
metadata:
|
||||
name: modelscope-chat-completions
|
||||
label:
|
||||
en_US: ModelScope
|
||||
zh_CN: 魔搭社区
|
||||
spec:
|
||||
config:
|
||||
- name: base-url
|
||||
label:
|
||||
en_US: Base URL
|
||||
zh_CN: 基础 URL
|
||||
type: string
|
||||
required: true
|
||||
default: "https://api-inference.modelscope.cn/v1"
|
||||
- name: args
|
||||
label:
|
||||
en_US: Args
|
||||
zh_CN: 附加参数
|
||||
type: object
|
||||
required: true
|
||||
default: {}
|
||||
- name: timeout
|
||||
label:
|
||||
en_US: Timeout
|
||||
zh_CN: 超时时间
|
||||
type: int
|
||||
required: true
|
||||
default: 120
|
||||
execution:
|
||||
python:
|
||||
path: ./modelscopechatcmpl.py
|
||||
attr: ModelScopeChatCompletions
|
||||
@@ -232,6 +232,96 @@
|
||||
"token_mgr": "zhipuai",
|
||||
"vision_supported": true,
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "Qwen/Qwen2.5-Coder-32B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "Qwen/Qwen2.5-Coder-14B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "Qwen/Qwen2.5-Coder-7B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "Qwen/Qwen2.5-72B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "Qwen/Qwen2.5-32B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "Qwen/Qwen2.5-14B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "Qwen/Qwen2.5-7B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "Qwen/QwQ-32B-Preview",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "Qwen/QwQ-32B",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "LLM-Research/Llama-3.3-70B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "LLM-Research/Meta-Llama-3.1-405B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "LLM-Research/Meta-Llama-3.1-8B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "LLM-Research/Meta-Llama-3.1-70B-Instruct",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "mistralai/Ministral-8B-Instruct-2410",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
},
|
||||
{
|
||||
"name": "deepseek-ai/DeepSeek-V3-0324",
|
||||
"requester": "modelscope-chat-completions",
|
||||
"token_mgr": "modelscope",
|
||||
"tool_call_supported": true
|
||||
}
|
||||
]
|
||||
}
|
||||
@@ -31,6 +31,9 @@
|
||||
],
|
||||
"volcark": [
|
||||
"xxxxxxxx"
|
||||
],
|
||||
"modelscope": [
|
||||
"xxxxxxxx"
|
||||
]
|
||||
},
|
||||
"requester": {
|
||||
@@ -95,6 +98,11 @@
|
||||
"args": {},
|
||||
"base-url": "https://ark.cn-beijing.volces.com/api/v3",
|
||||
"timeout": 120
|
||||
},
|
||||
"modelscope-chat-completions": {
|
||||
"base-url": "https://api-inference.modelscope.cn/v1",
|
||||
"args": {},
|
||||
"timeout": 120
|
||||
}
|
||||
},
|
||||
"model": "gpt-4o",
|
||||
|
||||
Reference in New Issue
Block a user