Files
LangBot/pkg/provider/modelmgr/apis/chatcmpl.py
2024-03-19 22:39:45 +08:00

155 lines
4.9 KiB
Python

from __future__ import annotations
import asyncio
import typing
import json
from typing import AsyncGenerator
import openai
import openai.types.chat.chat_completion as chat_completion
import httpx
from .. import api, entities, errors
from ....core import entities as core_entities, app
from ... import entities as llm_entities
from ...tools import entities as tools_entities
@api.requester_class("openai-chat-completions")
class OpenAIChatCompletions(api.LLMAPIRequester):
"""OpenAI ChatCompletion API 请求器"""
client: openai.AsyncClient
requester_cfg: dict
def __init__(self, ap: app.Application):
self.ap = ap
self.requester_cfg = self.ap.provider_cfg.data['requester']['openai-chat-completions']
async def initialize(self):
self.client = openai.AsyncClient(
api_key="",
base_url=self.requester_cfg['base-url'],
timeout=self.requester_cfg['timeout'],
http_client=httpx.AsyncClient(
proxies=self.ap.proxy_mgr.get_forward_proxies()
)
)
async def _req(
self,
args: dict,
) -> chat_completion.ChatCompletion:
self.ap.logger.debug(f"req chat_completion with args {args}")
return await self.client.chat.completions.create(**args)
async def _make_msg(
self,
chat_completion: chat_completion.ChatCompletion,
) -> llm_entities.Message:
chatcmpl_message = chat_completion.choices[0].message.dict()
message = llm_entities.Message(**chatcmpl_message)
return message
async def _closure(
self,
req_messages: list[dict],
use_model: entities.LLMModelInfo,
use_funcs: list[tools_entities.LLMFunction] = None,
) -> llm_entities.Message:
self.client.api_key = use_model.token_mgr.get_token()
args = self.requester_cfg['args'].copy()
args["model"] = use_model.name if use_model.model_name is None else use_model.model_name
if use_model.tool_call_supported:
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
if tools:
args["tools"] = tools
# 设置此次请求中的messages
messages = req_messages
args["messages"] = messages
# 发送请求
resp = await self._req(args)
# 处理请求结果
message = await self._make_msg(resp)
return message
async def _request(
self, query: core_entities.Query
) -> typing.AsyncGenerator[llm_entities.Message, None]:
"""请求"""
pending_tool_calls = []
req_messages = [ # req_messages 仅用于类内,外部同步由 query.messages 进行
m.dict(exclude_none=True) for m in query.prompt.messages
] + [m.dict(exclude_none=True) for m in query.messages]
# req_messages.append({"role": "user", "content": str(query.message_chain)})
msg = await self._closure(req_messages, query.use_model, query.use_funcs)
yield msg
pending_tool_calls = msg.tool_calls
req_messages.append(msg.dict(exclude_none=True))
while pending_tool_calls:
for tool_call in pending_tool_calls:
func = tool_call.function
parameters = json.loads(func.arguments)
func_ret = await self.ap.tool_mgr.execute_func_call(
query, func.name, parameters
)
msg = llm_entities.Message(
role="tool", content=json.dumps(func_ret, ensure_ascii=False), tool_call_id=tool_call.id
)
yield msg
req_messages.append(msg.dict(exclude_none=True))
# 处理完所有调用,继续请求
msg = await self._closure(req_messages, query.use_model, query.use_funcs)
yield msg
pending_tool_calls = msg.tool_calls
req_messages.append(msg.dict(exclude_none=True))
async def request(self, query: core_entities.Query) -> AsyncGenerator[llm_entities.Message, None]:
try:
async for msg in self._request(query):
yield msg
except asyncio.TimeoutError:
raise errors.RequesterError('请求超时')
except openai.BadRequestError as e:
if 'context_length_exceeded' in e.message:
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
else:
raise errors.RequesterError(f'请求参数错误: {e.message}')
except openai.AuthenticationError as e:
raise errors.RequesterError(f'无效的 api-key: {e.message}')
except openai.NotFoundError as e:
raise errors.RequesterError(f'请求路径错误: {e.message}')
except openai.RateLimitError as e:
raise errors.RequesterError(f'请求过于频繁: {e.message}')
except openai.APIError as e:
raise errors.RequesterError(f'请求错误: {e.message}')