Files
LangBot/pkg/openai/modelmgr.py
2024-01-12 14:48:49 +08:00

140 lines
4.4 KiB
Python

"""OpenAI 接口底层封装
目前使用的对话接口有:
ChatCompletion - gpt-3.5-turbo 等模型
Completion - text-davinci-003 等模型
此模块封装此两个接口的请求实现,为上层提供统一的调用方式
"""
import tiktoken
import openai
from ..openai.api import model as api_model
from ..openai.api import completion as api_completion
from ..openai.api import chat_completion as api_chat_completion
COMPLETION_MODELS = {
"gpt-3.5-turbo-instruct",
}
CHAT_COMPLETION_MODELS = {
# GPT 4 系列
"gpt-4-1106-preview",
"gpt-4-vision-preview",
"gpt-4",
"gpt-4-32k",
"gpt-4-0613",
"gpt-4-32k-0613",
"gpt-4-0314", # legacy
"gpt-4-32k-0314", # legacy
# GPT 3.5 系列
"gpt-3.5-turbo-1106",
"gpt-3.5-turbo",
"gpt-3.5-turbo-16k",
"gpt-3.5-turbo-0613", # legacy
"gpt-3.5-turbo-16k-0613", # legacy
"gpt-3.5-turbo-0301", # legacy
# One-API 接入
"SparkDesk",
"chatglm_pro",
"chatglm_std",
"chatglm_lite",
"qwen-v1",
"qwen-plus-v1",
"ERNIE-Bot",
"ERNIE-Bot-turbo",
"gemini-pro",
}
EDIT_MODELS = {
}
IMAGE_MODELS = {
}
def select_request_cls(client: openai.Client, model_name: str, messages: list, args: dict) -> api_model.RequestBase:
if model_name in CHAT_COMPLETION_MODELS:
return api_chat_completion.ChatCompletionRequest(client, model_name, messages, **args)
elif model_name in COMPLETION_MODELS:
return api_completion.CompletionRequest(client, model_name, messages, **args)
raise ValueError("不支持模型[{}],请检查配置文件".format(model_name))
def count_chat_completion_tokens(messages: list, model: str) -> int:
"""Return the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model in {
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0314",
"gpt-4-32k-0314",
"gpt-4-0613",
"gpt-4-32k-0613",
"SparkDesk",
"chatglm_pro",
"chatglm_std",
"chatglm_lite",
"qwen-v1",
"qwen-plus-v1",
"ERNIE-Bot",
"ERNIE-Bot-turbo",
"gemini-pro",
}:
tokens_per_message = 3
tokens_per_name = 1
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif "gpt-3.5-turbo" in model:
# print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
return count_chat_completion_tokens(messages, model="gpt-3.5-turbo-0613")
elif "gpt-4" in model:
# print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
return count_chat_completion_tokens(messages, model="gpt-4-0613")
else:
raise NotImplementedError(
f"""count_chat_completion_tokens() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
)
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
def count_completion_tokens(messages: list, model: str) -> int:
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
text = ""
for message in messages:
text += message['role'] + message['content'] + "\n"
text += "assistant: "
return len(encoding.encode(text))
def count_tokens(messages: list, model: str):
if model in CHAT_COMPLETION_MODELS:
return count_chat_completion_tokens(messages, model)
elif model in COMPLETION_MODELS:
return count_completion_tokens(messages, model)
raise ValueError("不支持模型[{}],请检查配置文件".format(model))