mirror of
https://github.com/langbot-app/LangBot.git
synced 2025-11-25 19:37:36 +08:00
367 lines
15 KiB
Python
367 lines
15 KiB
Python
# rag_manager.py
|
|
from __future__ import annotations
|
|
import os
|
|
import asyncio
|
|
import uuid
|
|
from pkg.rag.knowledge.services.parser import FileParser
|
|
from pkg.rag.knowledge.services.chunker import Chunker
|
|
from pkg.rag.knowledge.services.database import create_db_and_tables, SessionLocal, KnowledgeBase, File, Chunk
|
|
from pkg.core import app
|
|
from pkg.rag.knowledge.services.embedder import Embedder
|
|
from pkg.rag.knowledge.services.retriever import Retriever
|
|
from pkg.rag.knowledge.services.chroma_manager import ChromaIndexManager
|
|
|
|
|
|
class RAGManager:
|
|
ap: app.Application
|
|
|
|
def __init__(self, ap: app.Application):
|
|
self.ap = ap
|
|
self.chroma_manager = ChromaIndexManager()
|
|
self.parser = FileParser()
|
|
self.chunker = Chunker()
|
|
# Initialize Embedder with targeted model type and name
|
|
self.embedder = Embedder(
|
|
model_type='third_party_api', model_name_key='bge-m3', chroma_manager=self.chroma_manager
|
|
)
|
|
self.retriever = Retriever(
|
|
model_type='third_party_api', model_name_key='bge-m3', chroma_manager=self.chroma_manager
|
|
)
|
|
|
|
async def initialize_rag_system(self):
|
|
"""Initializes the RAG system by creating database tables."""
|
|
await asyncio.to_thread(create_db_and_tables)
|
|
|
|
async def create_knowledge_base(
|
|
self, kb_name: str, kb_description: str, embedding_model_uuid: str = '', top_k: int = 5
|
|
):
|
|
"""
|
|
Creates a new knowledge base if it doesn't already exist.
|
|
"""
|
|
try:
|
|
if not kb_name:
|
|
raise ValueError('Knowledge base name must be set while creating.')
|
|
|
|
def _create_kb_sync():
|
|
session = SessionLocal()
|
|
try:
|
|
kb = session.query(KnowledgeBase).filter_by(name=kb_name).first()
|
|
if not kb:
|
|
id = str(uuid.uuid4())
|
|
new_kb = KnowledgeBase(
|
|
name=kb_name,
|
|
description=kb_description,
|
|
embedding_model_uuid=embedding_model_uuid,
|
|
top_k=top_k,
|
|
id=id,
|
|
)
|
|
session.add(new_kb)
|
|
session.commit()
|
|
session.refresh(new_kb)
|
|
self.ap.logger.info(f"Knowledge Base '{kb_name}' created.")
|
|
return new_kb.id
|
|
else:
|
|
self.ap.logger.info(f"Knowledge Base '{kb_name}' already exists.")
|
|
except Exception as e:
|
|
session.rollback()
|
|
self.ap.logger.error(f"Error in _create_kb_sync for '{kb_name}': {str(e)}", exc_info=True)
|
|
raise
|
|
finally:
|
|
session.close()
|
|
|
|
return await asyncio.to_thread(_create_kb_sync)
|
|
except Exception as e:
|
|
self.ap.logger.error(f"Error creating knowledge base '{kb_name}': {str(e)}", exc_info=True)
|
|
raise
|
|
|
|
async def get_all_knowledge_bases(self):
|
|
"""
|
|
Retrieves all knowledge bases from the database.
|
|
"""
|
|
try:
|
|
|
|
def _get_all_kbs_sync():
|
|
session = SessionLocal()
|
|
try:
|
|
return session.query(KnowledgeBase).all()
|
|
finally:
|
|
session.close()
|
|
|
|
return await asyncio.to_thread(_get_all_kbs_sync)
|
|
except Exception as e:
|
|
self.ap.logger.error(f'Error retrieving knowledge bases: {str(e)}', exc_info=True)
|
|
return []
|
|
|
|
async def get_knowledge_base_by_id(self, kb_id: str):
|
|
"""
|
|
Retrieves a specific knowledge base by its ID.
|
|
"""
|
|
try:
|
|
|
|
def _get_kb_sync(kb_id_param):
|
|
session = SessionLocal()
|
|
try:
|
|
return session.query(KnowledgeBase).filter_by(id=kb_id_param).first()
|
|
finally:
|
|
session.close()
|
|
|
|
return await asyncio.to_thread(_get_kb_sync, kb_id)
|
|
except Exception as e:
|
|
self.ap.logger.error(f'Error retrieving knowledge base with ID {kb_id}: {str(e)}', exc_info=True)
|
|
return None
|
|
|
|
async def get_files_by_knowledge_base(self, kb_id: str):
|
|
"""
|
|
Retrieves files associated with a specific knowledge base by querying the File table directly.
|
|
"""
|
|
try:
|
|
|
|
def _get_files_sync(kb_id_param):
|
|
session = SessionLocal()
|
|
try:
|
|
return session.query(File).filter_by(kb_id=kb_id_param).all()
|
|
finally:
|
|
session.close()
|
|
|
|
return await asyncio.to_thread(_get_files_sync, kb_id)
|
|
except Exception as e:
|
|
self.ap.logger.error(f'Error retrieving files for knowledge base ID {kb_id}: {str(e)}', exc_info=True)
|
|
return []
|
|
|
|
async def get_all_files(self):
|
|
"""
|
|
Retrieves all files stored in the database, regardless of their association
|
|
with any specific knowledge base.
|
|
"""
|
|
try:
|
|
|
|
def _get_all_files_sync():
|
|
session = SessionLocal()
|
|
try:
|
|
return session.query(File).all()
|
|
finally:
|
|
session.close()
|
|
|
|
return await asyncio.to_thread(_get_all_files_sync)
|
|
except Exception as e:
|
|
self.ap.logger.error(f'Error retrieving all files: {str(e)}', exc_info=True)
|
|
return []
|
|
|
|
async def store_data(self, file_path: str, kb_id: str, file_type: str, file_id: str = None):
|
|
"""
|
|
Parses, chunks, embeds, and stores data from a given file into the RAG system.
|
|
Associates the file with a knowledge base using kb_id in the File table.
|
|
"""
|
|
self.ap.logger.info(f'Starting data storage process for file: {file_path}')
|
|
session = SessionLocal()
|
|
file_obj = None
|
|
|
|
try:
|
|
kb = session.query(KnowledgeBase).filter_by(id=kb_id).first()
|
|
if not kb:
|
|
self.ap.logger.info(f'Knowledge Base "{kb_id}" does not exist. ')
|
|
self.ap.logger.info(f'Created Knowledge Base with ID: {kb_id}')
|
|
else:
|
|
self.ap.logger.info(f"Knowledge Base '{kb_id}' already exists.")
|
|
|
|
file_name = os.path.basename(file_path)
|
|
text = await self.parser.parse(file_path)
|
|
if not text:
|
|
self.ap.logger.warning(f'No text extracted from file {file_path}. ')
|
|
return
|
|
|
|
chunks_texts = await self.chunker.chunk(text)
|
|
self.ap.logger.info(f"Chunked file '{file_name}' into {len(chunks_texts)} chunks.")
|
|
await self.embedder.embed_and_store(file_id=file_id, chunks=chunks_texts)
|
|
self.ap.logger.info(f'Data storage process completed for file: {file_path}')
|
|
|
|
except Exception as e:
|
|
session.rollback()
|
|
self.ap.logger.error(f'Error in store_data for file {file_path}: {str(e)}', exc_info=True)
|
|
raise
|
|
finally:
|
|
if file_id:
|
|
file_obj = session.query(File).filter_by(id=file_id).first()
|
|
if file_obj:
|
|
file_obj.status = 1
|
|
session.close()
|
|
|
|
async def retrieve_data(self, query: str):
|
|
"""
|
|
Retrieves relevant data chunks based on a given query using the configured retriever.
|
|
"""
|
|
self.ap.logger.info(f"Starting data retrieval process for query: '{query}'")
|
|
try:
|
|
retrieved_chunks = await self.retriever.retrieve(query)
|
|
self.ap.logger.info(f'Successfully retrieved {len(retrieved_chunks)} chunks for query.')
|
|
return retrieved_chunks
|
|
except Exception as e:
|
|
self.ap.logger.error(f"Error in retrieve_data for query '{query}': {str(e)}", exc_info=True)
|
|
return []
|
|
|
|
async def delete_data_by_file_id(self, file_id: str):
|
|
"""
|
|
Deletes all data associated with a specific file ID, including its chunks and vectors,
|
|
and the file record itself.
|
|
"""
|
|
self.ap.logger.info(f'Starting data deletion process for file_id: {file_id}')
|
|
session = SessionLocal()
|
|
try:
|
|
# delete vectors
|
|
await asyncio.to_thread(self.chroma_manager.delete_by_file_id_sync, file_id)
|
|
self.ap.logger.info(f'Deleted embeddings from ChromaDB for file_id: {file_id}')
|
|
|
|
chunks_to_delete = session.query(Chunk).filter_by(file_id=file_id).all()
|
|
for chunk in chunks_to_delete:
|
|
session.delete(chunk)
|
|
self.ap.logger.info(f'Deleted {len(chunks_to_delete)} chunk records for file_id: {file_id}')
|
|
|
|
file_to_delete = session.query(File).filter_by(id=file_id).first()
|
|
if file_to_delete:
|
|
session.delete(file_to_delete)
|
|
try:
|
|
await self.ap.storage_mgr.storage_provider.delete(file_id)
|
|
except Exception as e:
|
|
self.ap.logger.error(
|
|
f'Error deleting file from storage for file_id {file_id}: {str(e)}', exc_info=True
|
|
)
|
|
self.ap.logger.info(f'Deleted file record for file_id: {file_id}')
|
|
else:
|
|
self.ap.logger.warning(
|
|
f'File with ID {file_id} not found in database. Skipping deletion of file record.'
|
|
)
|
|
session.commit()
|
|
self.ap.logger.info(f'Successfully completed data deletion for file_id: {file_id}')
|
|
except Exception as e:
|
|
session.rollback()
|
|
self.ap.logger.error(f'Error deleting data for file_id {file_id}: {str(e)}', exc_info=True)
|
|
raise
|
|
finally:
|
|
session.close()
|
|
|
|
async def delete_kb_by_id(self, kb_id: str):
|
|
"""
|
|
Deletes a knowledge base and all associated files, chunks, and vectors.
|
|
This involves querying for associated files and then deleting them.
|
|
"""
|
|
self.ap.logger.info(f'Starting deletion of knowledge base with ID: {kb_id}')
|
|
session = SessionLocal()
|
|
|
|
try:
|
|
kb_to_delete = session.query(KnowledgeBase).filter_by(id=kb_id).first()
|
|
if not kb_to_delete:
|
|
self.ap.logger.warning(f'Knowledge Base with ID {kb_id} not found.')
|
|
return
|
|
|
|
files_to_delete = session.query(File).filter_by(kb_id=kb_id).all()
|
|
|
|
session.close()
|
|
|
|
for file_obj in files_to_delete:
|
|
try:
|
|
await self.delete_data_by_file_id(file_obj.id)
|
|
except Exception as file_del_e:
|
|
self.ap.logger.error(f'Failed to delete file ID {file_obj.id} during KB deletion: {file_del_e}')
|
|
|
|
session = SessionLocal()
|
|
try:
|
|
kb_final_delete = session.query(KnowledgeBase).filter_by(id=kb_id).first()
|
|
if kb_final_delete:
|
|
session.delete(kb_final_delete)
|
|
session.commit()
|
|
self.ap.logger.info(f'Successfully deleted knowledge base with ID: {kb_id}')
|
|
else:
|
|
self.ap.logger.warning(
|
|
f'Knowledge Base with ID {kb_id} not found after file deletion, skipping KB deletion.'
|
|
)
|
|
except Exception as kb_del_e:
|
|
session.rollback()
|
|
self.ap.logger.error(f'Error deleting KnowledgeBase record for ID {kb_id}: {kb_del_e}', exc_info=True)
|
|
raise
|
|
finally:
|
|
session.close()
|
|
|
|
except Exception as e:
|
|
# 如果在最初获取 KB 或文件列表时出错
|
|
if session.is_active:
|
|
session.rollback()
|
|
self.ap.logger.error(
|
|
f'Error during overall knowledge base deletion for ID {kb_id}: {str(e)}', exc_info=True
|
|
)
|
|
raise
|
|
finally:
|
|
if session.is_active:
|
|
session.close()
|
|
|
|
async def get_file_content_by_file_id(self, file_id: str) -> str:
|
|
file_bytes = await self.ap.storage_mgr.storage_provider.load(file_id)
|
|
|
|
_, ext = os.path.splitext(file_id.lower())
|
|
ext = ext.lstrip('.')
|
|
|
|
try:
|
|
text = file_bytes.decode('utf-8')
|
|
except UnicodeDecodeError:
|
|
return '[非文本文件或编码无法识别]'
|
|
|
|
if ext in ['txt', 'md', 'csv', 'log', 'py', 'html']:
|
|
return text
|
|
else:
|
|
return f'[未知类型: .{ext}]'
|
|
|
|
async def relate_file_id_with_kb(self, knowledge_base_uuid: str, file_id: str) -> None:
|
|
"""
|
|
Associates a file with a knowledge base by updating the kb_id in the File table.
|
|
"""
|
|
self.ap.logger.info(f'Associating file ID {file_id} with knowledge base UUID {knowledge_base_uuid}')
|
|
session = SessionLocal()
|
|
try:
|
|
# 查询知识库是否存在
|
|
kb = session.query(KnowledgeBase).filter_by(id=knowledge_base_uuid).first()
|
|
if not kb:
|
|
self.ap.logger.error(f'Knowledge Base with UUID {knowledge_base_uuid} not found.')
|
|
return
|
|
|
|
if not await self.ap.storage_mgr.storage_provider.exists(file_id):
|
|
self.ap.logger.error(f'File with ID {file_id} does not exist.')
|
|
return
|
|
self.ap.logger.info(f'File with ID {file_id} exists, proceeding with association.')
|
|
# add new file record
|
|
file_to_update = File(
|
|
id=file_id,
|
|
kb_id=kb.id,
|
|
file_name=file_id,
|
|
path=os.path.join('data', 'storage', file_id),
|
|
file_type=os.path.splitext(file_id)[1].lstrip('.'),
|
|
status=0,
|
|
)
|
|
session.add(file_to_update)
|
|
session.commit()
|
|
self.ap.logger.info(
|
|
f'Successfully associated file ID {file_id} with knowledge base UUID {knowledge_base_uuid}'
|
|
)
|
|
except Exception as e:
|
|
session.rollback()
|
|
self.ap.logger.error(
|
|
f'Error associating file ID {file_id} with knowledge base UUID {knowledge_base_uuid}: {str(e)}',
|
|
exc_info=True,
|
|
)
|
|
finally:
|
|
# 进行文件解析
|
|
try:
|
|
await self.store_data(
|
|
file_path=os.path.join('data', 'storage', file_id),
|
|
kb_id=knowledge_base_uuid,
|
|
file_type=os.path.splitext(file_id)[1].lstrip('.'),
|
|
file_id=file_id,
|
|
)
|
|
except Exception:
|
|
# 如果存储数据时出错,更新文件状态为失败
|
|
file_obj = session.query(File).filter_by(id=file_id).first()
|
|
if file_obj:
|
|
file_obj.status = 2
|
|
session.commit()
|
|
self.ap.logger.error(f'Error storing data for file ID {file_id}', exc_info=True)
|
|
|
|
session.close()
|