Files
LangBot/pkg/rag/knowledge/services/retriever.py
Guanchao Wang 6f98feaaf1 Feat/qdrant vdb (#1649)
* feat: Qdrant vector search support

Signed-off-by: Anush008 <anushshetty90@gmail.com>

* fix: modify env

* fix: fix the old version problem

* fix: For older versions

* perf: minor perf

---------

Signed-off-by: Anush008 <anushshetty90@gmail.com>
Co-authored-by: Anush008 <anushshetty90@gmail.com>
Co-authored-by: Junyan Qin <rockchinq@gmail.com>
2025-09-12 12:41:16 +08:00

49 lines
1.7 KiB
Python

from __future__ import annotations
from . import base_service
from ....core import app
from ....provider.modelmgr.requester import RuntimeEmbeddingModel
from ....entity.rag import retriever as retriever_entities
class Retriever(base_service.BaseService):
def __init__(self, ap: app.Application):
super().__init__()
self.ap = ap
async def retrieve(
self, kb_id: str, query: str, embedding_model: RuntimeEmbeddingModel, k: int = 5
) -> list[retriever_entities.RetrieveResultEntry]:
self.ap.logger.info(
f"Retrieving for query: '{query[:10]}' with k={k} using {embedding_model.model_entity.uuid}"
)
query_embedding: list[float] = await embedding_model.requester.invoke_embedding(
model=embedding_model,
input_text=[query],
extra_args={}, # TODO: add extra args
)
vector_results = await self.ap.vector_db_mgr.vector_db.search(kb_id, query_embedding[0], k)
# 'ids' shape mirrors the Chroma-style response contract for compatibility
matched_vector_ids = vector_results.get('ids', [[]])[0]
distances = vector_results.get('distances', [[]])[0]
vector_metadatas = vector_results.get('metadatas', [[]])[0]
if not matched_vector_ids:
self.ap.logger.info('No relevant chunks found in vector database.')
return []
result: list[retriever_entities.RetrieveResultEntry] = []
for i, id in enumerate(matched_vector_ids):
entry = retriever_entities.RetrieveResultEntry(
id=id,
metadata=vector_metadatas[i],
distance=distances[i],
)
result.append(entry)
return result