mirror of
https://github.com/langbot-app/LangBot.git
synced 2025-11-25 19:37:36 +08:00
213 lines
7.6 KiB
Python
213 lines
7.6 KiB
Python
from __future__ import annotations
|
|
import traceback
|
|
import uuid
|
|
from .services import parser, chunker
|
|
from pkg.core import app
|
|
from pkg.rag.knowledge.services.embedder import Embedder
|
|
from pkg.rag.knowledge.services.retriever import Retriever
|
|
import sqlalchemy
|
|
from ...entity.persistence import rag as persistence_rag
|
|
from pkg.core import taskmgr
|
|
from ...entity.rag import retriever as retriever_entities
|
|
|
|
|
|
class RuntimeKnowledgeBase:
|
|
ap: app.Application
|
|
|
|
knowledge_base_entity: persistence_rag.KnowledgeBase
|
|
|
|
parser: parser.FileParser
|
|
|
|
chunker: chunker.Chunker
|
|
|
|
embedder: Embedder
|
|
|
|
retriever: Retriever
|
|
|
|
def __init__(self, ap: app.Application, knowledge_base_entity: persistence_rag.KnowledgeBase):
|
|
self.ap = ap
|
|
self.knowledge_base_entity = knowledge_base_entity
|
|
self.parser = parser.FileParser(ap=self.ap)
|
|
self.chunker = chunker.Chunker(ap=self.ap)
|
|
self.embedder = Embedder(ap=self.ap)
|
|
self.retriever = Retriever(ap=self.ap)
|
|
# 传递kb_id给retriever
|
|
self.retriever.kb_id = knowledge_base_entity.uuid
|
|
|
|
async def initialize(self):
|
|
pass
|
|
|
|
async def _store_file_task(self, file: persistence_rag.File, task_context: taskmgr.TaskContext):
|
|
try:
|
|
# set file status to processing
|
|
await self.ap.persistence_mgr.execute_async(
|
|
sqlalchemy.update(persistence_rag.File)
|
|
.where(persistence_rag.File.uuid == file.uuid)
|
|
.values(status='processing')
|
|
)
|
|
|
|
task_context.set_current_action('Parsing file')
|
|
# parse file
|
|
text = await self.parser.parse(file.file_name, file.extension)
|
|
if not text:
|
|
raise Exception(f'No text extracted from file {file.file_name}')
|
|
|
|
task_context.set_current_action('Chunking file')
|
|
# chunk file
|
|
chunks_texts = await self.chunker.chunk(text)
|
|
if not chunks_texts:
|
|
raise Exception(f'No chunks extracted from file {file.file_name}')
|
|
|
|
task_context.set_current_action('Embedding chunks')
|
|
|
|
embedding_model = await self.ap.model_mgr.get_embedding_model_by_uuid(
|
|
self.knowledge_base_entity.embedding_model_uuid
|
|
)
|
|
# embed chunks
|
|
await self.embedder.embed_and_store(
|
|
kb_id=self.knowledge_base_entity.uuid,
|
|
file_id=file.uuid,
|
|
chunks=chunks_texts,
|
|
embedding_model=embedding_model,
|
|
)
|
|
|
|
# set file status to completed
|
|
await self.ap.persistence_mgr.execute_async(
|
|
sqlalchemy.update(persistence_rag.File)
|
|
.where(persistence_rag.File.uuid == file.uuid)
|
|
.values(status='completed')
|
|
)
|
|
|
|
except Exception as e:
|
|
self.ap.logger.error(f'Error storing file {file.uuid}: {e}')
|
|
traceback.print_exc()
|
|
# set file status to failed
|
|
await self.ap.persistence_mgr.execute_async(
|
|
sqlalchemy.update(persistence_rag.File)
|
|
.where(persistence_rag.File.uuid == file.uuid)
|
|
.values(status='failed')
|
|
)
|
|
|
|
raise
|
|
|
|
async def store_file(self, file_id: str) -> str:
|
|
# pre checking
|
|
if not await self.ap.storage_mgr.storage_provider.exists(file_id):
|
|
raise Exception(f'File {file_id} not found')
|
|
|
|
file_uuid = str(uuid.uuid4())
|
|
kb_id = self.knowledge_base_entity.uuid
|
|
file_name = file_id
|
|
extension = file_name.split('.')[-1]
|
|
|
|
file_obj_data = {
|
|
'uuid': file_uuid,
|
|
'kb_id': kb_id,
|
|
'file_name': file_name,
|
|
'extension': extension,
|
|
'status': 'pending',
|
|
}
|
|
|
|
file_obj = persistence_rag.File(**file_obj_data)
|
|
|
|
await self.ap.persistence_mgr.execute_async(sqlalchemy.insert(persistence_rag.File).values(file_obj_data))
|
|
|
|
# run background task asynchronously
|
|
ctx = taskmgr.TaskContext.new()
|
|
wrapper = self.ap.task_mgr.create_user_task(
|
|
self._store_file_task(file_obj, task_context=ctx),
|
|
kind='knowledge-operation',
|
|
name=f'knowledge-store-file-{file_id}',
|
|
label=f'Store file {file_id}',
|
|
context=ctx,
|
|
)
|
|
return wrapper.id
|
|
|
|
async def retrieve(self, query: str) -> list[retriever_entities.RetrieveResultEntry]:
|
|
embedding_model = await self.ap.model_mgr.get_embedding_model_by_uuid(
|
|
self.knowledge_base_entity.embedding_model_uuid
|
|
)
|
|
return await self.retriever.retrieve(self.knowledge_base_entity.uuid, query, embedding_model)
|
|
|
|
async def delete_file(self, file_id: str):
|
|
# delete vector
|
|
await self.ap.vector_db_mgr.vector_db.delete_by_file_id(self.knowledge_base_entity.uuid, file_id)
|
|
|
|
# delete chunk
|
|
await self.ap.persistence_mgr.execute_async(
|
|
sqlalchemy.delete(persistence_rag.Chunk).where(persistence_rag.Chunk.file_id == file_id)
|
|
)
|
|
|
|
await self.ap.persistence_mgr.execute_async(
|
|
sqlalchemy.delete(persistence_rag.File).where(persistence_rag.File.uuid == file_id)
|
|
)
|
|
|
|
async def dispose(self):
|
|
await self.ap.vector_db_mgr.vector_db.delete_collection(self.knowledge_base_entity.uuid)
|
|
|
|
|
|
class RAGManager:
|
|
ap: app.Application
|
|
|
|
knowledge_bases: list[RuntimeKnowledgeBase]
|
|
|
|
def __init__(self, ap: app.Application):
|
|
self.ap = ap
|
|
self.knowledge_bases = []
|
|
|
|
async def initialize(self):
|
|
await self.load_knowledge_bases_from_db()
|
|
|
|
async def load_knowledge_bases_from_db(self):
|
|
self.ap.logger.info('Loading knowledge bases from db...')
|
|
|
|
self.knowledge_bases = []
|
|
|
|
result = await self.ap.persistence_mgr.execute_async(sqlalchemy.select(persistence_rag.KnowledgeBase))
|
|
|
|
knowledge_bases = result.all()
|
|
|
|
for knowledge_base in knowledge_bases:
|
|
try:
|
|
await self.load_knowledge_base(knowledge_base)
|
|
except Exception as e:
|
|
self.ap.logger.error(
|
|
f'Error loading knowledge base {knowledge_base.uuid}: {e}\n{traceback.format_exc()}'
|
|
)
|
|
|
|
async def load_knowledge_base(
|
|
self,
|
|
knowledge_base_entity: persistence_rag.KnowledgeBase | sqlalchemy.Row | dict,
|
|
) -> RuntimeKnowledgeBase:
|
|
if isinstance(knowledge_base_entity, sqlalchemy.Row):
|
|
knowledge_base_entity = persistence_rag.KnowledgeBase(**knowledge_base_entity._mapping)
|
|
elif isinstance(knowledge_base_entity, dict):
|
|
knowledge_base_entity = persistence_rag.KnowledgeBase(**knowledge_base_entity)
|
|
|
|
runtime_knowledge_base = RuntimeKnowledgeBase(ap=self.ap, knowledge_base_entity=knowledge_base_entity)
|
|
|
|
await runtime_knowledge_base.initialize()
|
|
|
|
self.knowledge_bases.append(runtime_knowledge_base)
|
|
|
|
return runtime_knowledge_base
|
|
|
|
async def get_knowledge_base_by_uuid(self, kb_uuid: str) -> RuntimeKnowledgeBase | None:
|
|
for kb in self.knowledge_bases:
|
|
if kb.knowledge_base_entity.uuid == kb_uuid:
|
|
return kb
|
|
return None
|
|
|
|
async def remove_knowledge_base_from_runtime(self, kb_uuid: str):
|
|
for kb in self.knowledge_bases:
|
|
if kb.knowledge_base_entity.uuid == kb_uuid:
|
|
self.knowledge_bases.remove(kb)
|
|
return
|
|
|
|
async def delete_knowledge_base(self, kb_uuid: str):
|
|
for kb in self.knowledge_bases:
|
|
if kb.knowledge_base_entity.uuid == kb_uuid:
|
|
await kb.dispose()
|
|
self.knowledge_bases.remove(kb)
|
|
return
|