Files
LangBot/pkg/provider/runners/localagent.py
Copilot 3edae3e678 feat: Support multiple knowledge base binding in pipelines (#1766)
* Initial plan

* Add multi-knowledge base support to pipelines

- Created database migration dbm010 to convert knowledge-base field from string to array
- Updated default pipeline config to use knowledge-bases array
- Updated pipeline metadata to use knowledge-base-multi-selector type
- Modified localagent.py to retrieve from multiple knowledge bases and concatenate results
- Added KNOWLEDGE_BASE_MULTI_SELECTOR type to frontend form entities
- Implemented multi-selector UI component with dialog for selecting multiple knowledge bases

Co-authored-by: RockChinQ <45992437+RockChinQ@users.noreply.github.com>

* Add i18n translations for multi-knowledge base selector

Co-authored-by: RockChinQ <45992437+RockChinQ@users.noreply.github.com>

* Fix prettier formatting errors in DynamicFormItemComponent

Co-authored-by: RockChinQ <45992437+RockChinQ@users.noreply.github.com>

* Add accessibility attributes to knowledge base selector checkbox

Co-authored-by: RockChinQ <45992437+RockChinQ@users.noreply.github.com>

* fix: minor fix

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: RockChinQ <45992437+RockChinQ@users.noreply.github.com>
Co-authored-by: Junyan Qin <rockchinq@gmail.com>
2025-11-08 13:45:09 +08:00

302 lines
12 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from __future__ import annotations
import json
import copy
import typing
from .. import runner
import langbot_plugin.api.entities.builtin.pipeline.query as pipeline_query
import langbot_plugin.api.entities.builtin.provider.message as provider_message
rag_combined_prompt_template = """
The following are relevant context entries retrieved from the knowledge base.
Please use them to answer the user's message.
Respond in the same language as the user's input.
<context>
{rag_context}
</context>
<user_message>
{user_message}
</user_message>
"""
@runner.runner_class('local-agent')
class LocalAgentRunner(runner.RequestRunner):
"""本地Agent请求运行器"""
class ToolCallTracker:
"""工具调用追踪器"""
def __init__(self):
self.active_calls: dict[str, dict] = {}
self.completed_calls: list[provider_message.ToolCall] = []
async def run(
self, query: pipeline_query.Query
) -> typing.AsyncGenerator[provider_message.Message | provider_message.MessageChunk, None]:
"""运行请求"""
pending_tool_calls = []
# Get knowledge bases list (new field)
kb_uuids = query.pipeline_config['ai']['local-agent'].get('knowledge-bases', [])
# Fallback to old field for backward compatibility
if not kb_uuids:
old_kb_uuid = query.pipeline_config['ai']['local-agent'].get('knowledge-base', '')
if old_kb_uuid and old_kb_uuid != '__none__':
kb_uuids = [old_kb_uuid]
user_message = copy.deepcopy(query.user_message)
user_message_text = ''
if isinstance(user_message.content, str):
user_message_text = user_message.content
elif isinstance(user_message.content, list):
for ce in user_message.content:
if ce.type == 'text':
user_message_text += ce.text
break
if kb_uuids and user_message_text:
# only support text for now
all_results = []
# Retrieve from each knowledge base
for kb_uuid in kb_uuids:
kb = await self.ap.rag_mgr.get_knowledge_base_by_uuid(kb_uuid)
if not kb:
self.ap.logger.warning(f'Knowledge base {kb_uuid} not found, skipping')
continue
result = await kb.retrieve(user_message_text, kb.knowledge_base_entity.top_k)
if result:
all_results.extend(result)
final_user_message_text = ''
if all_results:
rag_context = '\n\n'.join(
f'[{i + 1}] {entry.metadata.get("text", "")}' for i, entry in enumerate(all_results)
)
final_user_message_text = rag_combined_prompt_template.format(
rag_context=rag_context, user_message=user_message_text
)
else:
final_user_message_text = user_message_text
self.ap.logger.debug(f'Final user message text: {final_user_message_text}')
for ce in user_message.content:
if ce.type == 'text':
ce.text = final_user_message_text
break
req_messages = query.prompt.messages.copy() + query.messages.copy() + [user_message]
try:
is_stream = await query.adapter.is_stream_output_supported()
except AttributeError:
is_stream = False
remove_think = query.pipeline_config['output'].get('misc', '').get('remove-think')
use_llm_model = await self.ap.model_mgr.get_model_by_uuid(query.use_llm_model_uuid)
if not is_stream:
# 非流式输出,直接请求
msg = await use_llm_model.requester.invoke_llm(
query,
use_llm_model,
req_messages,
query.use_funcs,
extra_args=use_llm_model.model_entity.extra_args,
remove_think=remove_think,
)
yield msg
final_msg = msg
else:
# 流式输出,需要处理工具调用
tool_calls_map: dict[str, provider_message.ToolCall] = {}
msg_idx = 0
accumulated_content = '' # 从开始累积的所有内容
last_role = 'assistant'
msg_sequence = 1
async for msg in use_llm_model.requester.invoke_llm_stream(
query,
use_llm_model,
req_messages,
query.use_funcs,
extra_args=use_llm_model.model_entity.extra_args,
remove_think=remove_think,
):
msg_idx = msg_idx + 1
# 记录角色
if msg.role:
last_role = msg.role
# 累积内容
if msg.content:
accumulated_content += msg.content
# 处理工具调用
if msg.tool_calls:
for tool_call in msg.tool_calls:
if tool_call.id not in tool_calls_map:
tool_calls_map[tool_call.id] = provider_message.ToolCall(
id=tool_call.id,
type=tool_call.type,
function=provider_message.FunctionCall(
name=tool_call.function.name if tool_call.function else '', arguments=''
),
)
if tool_call.function and tool_call.function.arguments:
# 流式处理中工具调用参数可能分多个chunk返回需要追加而不是覆盖
tool_calls_map[tool_call.id].function.arguments += tool_call.function.arguments
# continue
# 每8个chunk或最后一个chunk时输出所有累积的内容
if msg_idx % 8 == 0 or msg.is_final:
msg_sequence += 1
yield provider_message.MessageChunk(
role=last_role,
content=accumulated_content, # 输出所有累积内容
tool_calls=list(tool_calls_map.values()) if (tool_calls_map and msg.is_final) else None,
is_final=msg.is_final,
msg_sequence=msg_sequence,
)
# 创建最终消息用于后续处理
final_msg = provider_message.MessageChunk(
role=last_role,
content=accumulated_content,
tool_calls=list(tool_calls_map.values()) if tool_calls_map else None,
msg_sequence=msg_sequence,
)
pending_tool_calls = final_msg.tool_calls
first_content = final_msg.content
if isinstance(final_msg, provider_message.MessageChunk):
first_end_sequence = final_msg.msg_sequence
req_messages.append(final_msg)
# 持续请求,只要还有待处理的工具调用就继续处理调用
while pending_tool_calls:
for tool_call in pending_tool_calls:
try:
func = tool_call.function
parameters = json.loads(func.arguments)
func_ret = await self.ap.tool_mgr.execute_func_call(func.name, parameters)
if is_stream:
msg = provider_message.MessageChunk(
role='tool',
content=json.dumps(func_ret, ensure_ascii=False),
tool_call_id=tool_call.id,
)
else:
msg = provider_message.Message(
role='tool',
content=json.dumps(func_ret, ensure_ascii=False),
tool_call_id=tool_call.id,
)
yield msg
req_messages.append(msg)
except Exception as e:
# 工具调用出错,添加一个报错信息到 req_messages
err_msg = provider_message.Message(role='tool', content=f'err: {e}', tool_call_id=tool_call.id)
yield err_msg
req_messages.append(err_msg)
if is_stream:
tool_calls_map = {}
msg_idx = 0
accumulated_content = '' # 从开始累积的所有内容
last_role = 'assistant'
msg_sequence = first_end_sequence
async for msg in use_llm_model.requester.invoke_llm_stream(
query,
use_llm_model,
req_messages,
query.use_funcs,
extra_args=use_llm_model.model_entity.extra_args,
remove_think=remove_think,
):
msg_idx += 1
# 记录角色
if msg.role:
last_role = msg.role
# 第一次请求工具调用时的内容
if msg_idx == 1:
accumulated_content = first_content if first_content is not None else accumulated_content
# 累积内容
if msg.content:
accumulated_content += msg.content
# 处理工具调用
if msg.tool_calls:
for tool_call in msg.tool_calls:
if tool_call.id not in tool_calls_map:
tool_calls_map[tool_call.id] = provider_message.ToolCall(
id=tool_call.id,
type=tool_call.type,
function=provider_message.FunctionCall(
name=tool_call.function.name if tool_call.function else '', arguments=''
),
)
if tool_call.function and tool_call.function.arguments:
# 流式处理中工具调用参数可能分多个chunk返回需要追加而不是覆盖
tool_calls_map[tool_call.id].function.arguments += tool_call.function.arguments
# 每8个chunk或最后一个chunk时输出所有累积的内容
if msg_idx % 8 == 0 or msg.is_final:
msg_sequence += 1
yield provider_message.MessageChunk(
role=last_role,
content=accumulated_content, # 输出所有累积内容
tool_calls=list(tool_calls_map.values()) if (tool_calls_map and msg.is_final) else None,
is_final=msg.is_final,
msg_sequence=msg_sequence,
)
final_msg = provider_message.MessageChunk(
role=last_role,
content=accumulated_content,
tool_calls=list(tool_calls_map.values()) if tool_calls_map else None,
msg_sequence=msg_sequence,
)
else:
# 处理完所有调用,再次请求
msg = await use_llm_model.requester.invoke_llm(
query,
use_llm_model,
req_messages,
query.use_funcs,
extra_args=use_llm_model.model_entity.extra_args,
remove_think=remove_think,
)
yield msg
final_msg = msg
pending_tool_calls = final_msg.tool_calls
req_messages.append(final_msg)