Files
LangBot/pkg/provider/modelmgr/requesters/modelscopechatcmpl.py
2025-07-13 20:30:17 +08:00

205 lines
7.6 KiB
Python

from __future__ import annotations
import asyncio
import typing
import openai
import openai.types.chat.chat_completion as chat_completion
import openai.types.chat.chat_completion_message_tool_call as chat_completion_message_tool_call
import httpx
from .. import entities, errors, requester
import langbot_plugin.api.entities.builtin.resource.tool as resource_tool
import langbot_plugin.api.entities.builtin.pipeline.query as pipeline_query
import langbot_plugin.api.entities.builtin.provider.message as provider_message
class ModelScopeChatCompletions(requester.LLMAPIRequester):
"""ModelScope ChatCompletion API 请求器"""
client: openai.AsyncClient
default_config: dict[str, typing.Any] = {
'base_url': 'https://api-inference.modelscope.cn/v1',
'timeout': 120,
}
async def initialize(self):
self.client = openai.AsyncClient(
api_key='',
base_url=self.requester_cfg['base_url'],
timeout=self.requester_cfg['timeout'],
http_client=httpx.AsyncClient(trust_env=True, timeout=self.requester_cfg['timeout']),
)
async def _req(
self,
args: dict,
extra_body: dict = {},
) -> chat_completion.ChatCompletion:
args['stream'] = True
chunk = None
pending_content = ''
tool_calls = []
resp_gen: openai.AsyncStream = await self.client.chat.completions.create(**args, extra_body=extra_body)
async for chunk in resp_gen:
# print(chunk)
if not chunk or not chunk.id or not chunk.choices or not chunk.choices[0] or not chunk.choices[0].delta:
continue
if chunk.choices[0].delta.content is not None:
pending_content += chunk.choices[0].delta.content
if chunk.choices[0].delta.tool_calls is not None:
for tool_call in chunk.choices[0].delta.tool_calls:
if tool_call.function.arguments is None:
continue
for tc in tool_calls:
if tc.index == tool_call.index:
tc.function.arguments += tool_call.function.arguments
break
else:
tool_calls.append(tool_call)
if chunk.choices[0].finish_reason is not None:
break
real_tool_calls = []
for tc in tool_calls:
function = chat_completion_message_tool_call.Function(
name=tc.function.name, arguments=tc.function.arguments
)
real_tool_calls.append(
chat_completion_message_tool_call.ChatCompletionMessageToolCall(
id=tc.id, function=function, type='function'
)
)
return (
chat_completion.ChatCompletion(
id=chunk.id,
object='chat.completion',
created=chunk.created,
choices=[
chat_completion.Choice(
index=0,
message=chat_completion.ChatCompletionMessage(
role='assistant',
content=pending_content,
tool_calls=real_tool_calls if len(real_tool_calls) > 0 else None,
),
finish_reason=chunk.choices[0].finish_reason
if hasattr(chunk.choices[0], 'finish_reason') and chunk.choices[0].finish_reason is not None
else 'stop',
logprobs=chunk.choices[0].logprobs,
)
],
model=chunk.model,
service_tier=chunk.service_tier if hasattr(chunk, 'service_tier') else None,
system_fingerprint=chunk.system_fingerprint if hasattr(chunk, 'system_fingerprint') else None,
usage=chunk.usage if hasattr(chunk, 'usage') else None,
)
if chunk
else None
)
async def _make_msg(
self,
chat_completion: chat_completion.ChatCompletion,
) -> provider_message.Message:
chatcmpl_message = chat_completion.choices[0].message.dict()
# 确保 role 字段存在且不为 None
if 'role' not in chatcmpl_message or chatcmpl_message['role'] is None:
chatcmpl_message['role'] = 'assistant'
message = provider_message.Message(**chatcmpl_message)
return message
async def _closure(
self,
query: pipeline_query.Query,
req_messages: list[dict],
use_model: requester.RuntimeLLMModel,
use_funcs: list[resource_tool.LLMTool] = None,
extra_args: dict[str, typing.Any] = {},
) -> provider_message.Message:
self.client.api_key = use_model.token_mgr.get_token()
args = {}
args['model'] = use_model.model_entity.name
if use_funcs:
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
if tools:
args['tools'] = tools
# 设置此次请求中的messages
messages = req_messages.copy()
# 检查vision
for msg in messages:
if 'content' in msg and isinstance(msg['content'], list):
for me in msg['content']:
if me['type'] == 'image_base64':
me['image_url'] = {'url': me['image_base64']}
me['type'] = 'image_url'
del me['image_base64']
args['messages'] = messages
# 发送请求
resp = await self._req(args, extra_body=extra_args)
# 处理请求结果
message = await self._make_msg(resp)
return message
async def invoke_llm(
self,
query: pipeline_query.Query,
model: entities.LLMModelInfo,
messages: typing.List[provider_message.Message],
funcs: typing.List[resource_tool.LLMTool] = None,
extra_args: dict[str, typing.Any] = {},
) -> provider_message.Message:
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
for m in messages:
msg_dict = m.dict(exclude_none=True)
content = msg_dict.get('content')
if isinstance(content, list):
# 检查 content 列表中是否每个部分都是文本
if all(isinstance(part, dict) and part.get('type') == 'text' for part in content):
# 将所有文本部分合并为一个字符串
msg_dict['content'] = '\n'.join(part['text'] for part in content)
req_messages.append(msg_dict)
try:
return await self._closure(
query=query, req_messages=req_messages, use_model=model, use_funcs=funcs, extra_args=extra_args
)
except asyncio.TimeoutError:
raise errors.RequesterError('请求超时')
except openai.BadRequestError as e:
if 'context_length_exceeded' in e.message:
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
else:
raise errors.RequesterError(f'请求参数错误: {e.message}')
except openai.AuthenticationError as e:
raise errors.RequesterError(f'无效的 api-key: {e.message}')
except openai.NotFoundError as e:
raise errors.RequesterError(f'请求路径错误: {e.message}')
except openai.RateLimitError as e:
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
except openai.APIError as e:
raise errors.RequesterError(f'请求错误: {e.message}')