mirror of
https://github.com/langbot-app/LangBot.git
synced 2025-11-25 19:37:36 +08:00
223 lines
10 KiB
Python
223 lines
10 KiB
Python
# services/embedding_models.py
|
|
|
|
import os
|
|
from typing import Dict, Any, List, Type, Optional
|
|
import logging
|
|
import aiohttp # Import aiohttp for asynchronous requests
|
|
import asyncio
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Base class for all embedding models
|
|
class BaseEmbeddingModel:
|
|
def __init__(self, model_name: str):
|
|
self.model_name = model_name
|
|
self._embedding_dimension = None
|
|
|
|
async def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Asynchronously embeds a list of texts."""
|
|
raise NotImplementedError
|
|
|
|
async def embed_query(self, text: str) -> List[float]:
|
|
"""Asynchronously embeds a single query text."""
|
|
raise NotImplementedError
|
|
|
|
@property
|
|
def embedding_dimension(self) -> int:
|
|
"""Returns the embedding dimension of the model."""
|
|
if self._embedding_dimension is None:
|
|
raise NotImplementedError("Embedding dimension not set for this model.")
|
|
return self._embedding_dimension
|
|
|
|
class EmbeddingModelFactory:
|
|
@staticmethod
|
|
def create_model(model_type: str, model_name_key: str) -> BaseEmbeddingModel:
|
|
"""
|
|
Factory method to create an embedding model instance.
|
|
Currently only supports 'third_party_api' types.
|
|
"""
|
|
if model_name_key not in EMBEDDING_MODEL_CONFIGS:
|
|
raise ValueError(f"Embedding model configuration '{model_name_key}' not found in EMBEDDING_MODEL_CONFIGS.")
|
|
|
|
config = EMBEDDING_MODEL_CONFIGS[model_name_key]
|
|
|
|
if config['type'] == "third_party_api":
|
|
required_keys = ['api_endpoint', 'headers', 'payload_template', 'embedding_dimension']
|
|
if not all(key in config for key in required_keys):
|
|
raise ValueError(f"Missing configuration keys for third_party_api model '{model_name_key}'. Required: {required_keys}")
|
|
|
|
# Retrieve model_name from config if it differs from model_name_key
|
|
# Some APIs expect a specific 'model' value in the payload that might be different from the key
|
|
api_model_name = config.get('model_name', model_name_key)
|
|
|
|
return ThirdPartyAPIEmbeddingModel(
|
|
model_name=api_model_name, # Use the model_name from config or the key
|
|
api_endpoint=config['api_endpoint'],
|
|
headers=config['headers'],
|
|
payload_template=config['payload_template'],
|
|
embedding_dimension=config['embedding_dimension']
|
|
)
|
|
|
|
class SentenceTransformerEmbeddingModel(BaseEmbeddingModel):
|
|
def __init__(self, model_name: str):
|
|
super().__init__(model_name)
|
|
try:
|
|
# SentenceTransformer is inherently synchronous, but we'll wrap its calls
|
|
# in async methods. The actual computation will still block the event loop
|
|
# if not run in a separate thread/process, but this keeps the API consistent.
|
|
self.model = SentenceTransformer(model_name)
|
|
self._embedding_dimension = self.model.get_sentence_embedding_dimension()
|
|
logger.info(f"Initialized SentenceTransformer model '{model_name}' with dimension {self._embedding_dimension}")
|
|
except Exception as e:
|
|
logger.error(f"Failed to load SentenceTransformer model {model_name}: {e}")
|
|
raise
|
|
|
|
async def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
# For CPU-bound tasks like local model inference, consider running in a thread pool
|
|
# to prevent blocking the event loop for long operations.
|
|
# For simplicity here, we'll call it directly.
|
|
return self.model.encode(texts).tolist()
|
|
|
|
async def embed_query(self, text: str) -> List[float]:
|
|
return self.model.encode(text).tolist()
|
|
|
|
|
|
class ThirdPartyAPIEmbeddingModel(BaseEmbeddingModel):
|
|
def __init__(self, model_name: str, api_endpoint: str, headers: Dict[str, str], payload_template: Dict[str, Any], embedding_dimension: int):
|
|
super().__init__(model_name)
|
|
self.api_endpoint = api_endpoint
|
|
self.headers = headers
|
|
self.payload_template = payload_template
|
|
self._embedding_dimension = embedding_dimension
|
|
self.session = None # aiohttp client session will be initialized on first use or in a context manager
|
|
logger.info(f"Initialized ThirdPartyAPIEmbeddingModel '{model_name}' for async calls to {api_endpoint} with dimension {embedding_dimension}")
|
|
|
|
async def _get_session(self):
|
|
"""Lazily create or return the aiohttp client session."""
|
|
if self.session is None or self.session.closed:
|
|
self.session = aiohttp.ClientSession()
|
|
return self.session
|
|
|
|
async def close_session(self):
|
|
"""Explicitly close the aiohttp client session."""
|
|
if self.session and not self.session.closed:
|
|
await self.session.close()
|
|
self.session = None
|
|
logger.info(f"Closed aiohttp session for model {self.model_name}")
|
|
|
|
async def embed_documents(self, texts: List[str]) -> List[List[float]]:
|
|
"""Asynchronously embeds a list of texts using the third-party API."""
|
|
session = await self._get_session()
|
|
embeddings = []
|
|
tasks = []
|
|
for text in texts:
|
|
payload = self.payload_template.copy()
|
|
if 'input' in payload:
|
|
payload['input'] = text
|
|
elif 'texts' in payload:
|
|
payload['texts'] = [text]
|
|
else:
|
|
raise ValueError("Payload template does not contain expected text input key.")
|
|
|
|
tasks.append(self._make_api_request(session, payload))
|
|
|
|
results = await asyncio.gather(*tasks, return_exceptions=True)
|
|
|
|
for i, res in enumerate(results):
|
|
if isinstance(res, Exception):
|
|
logger.error(f"Error embedding text '{texts[i][:50]}...': {res}")
|
|
# Depending on your error handling strategy, you might:
|
|
# - Append None or an empty list
|
|
# - Re-raise the exception to stop processing
|
|
# - Log and skip, then continue
|
|
embeddings.append([0.0] * self.embedding_dimension) # Append dummy embedding or handle failure
|
|
else:
|
|
embeddings.append(res)
|
|
|
|
return embeddings
|
|
|
|
async def _make_api_request(self, session: aiohttp.ClientSession, payload: Dict[str, Any]) -> List[float]:
|
|
"""Helper to make an asynchronous API request and extract embedding."""
|
|
try:
|
|
async with session.post(self.api_endpoint, headers=self.headers, json=payload) as response:
|
|
response.raise_for_status() # Raise an exception for HTTP errors (4xx, 5xx)
|
|
api_response = await response.json()
|
|
|
|
# Adjust this based on your API's actual response structure
|
|
if "data" in api_response and len(api_response["data"]) > 0 and "embedding" in api_response["data"][0]:
|
|
embedding = api_response["data"][0]["embedding"]
|
|
if len(embedding) != self.embedding_dimension:
|
|
logger.warning(f"API returned embedding of dimension {len(embedding)}, but expected {self.embedding_dimension} for model {self.model_name}. Adjusting config might be needed.")
|
|
return embedding
|
|
elif "embeddings" in api_response and isinstance(api_response["embeddings"], list) and api_response["embeddings"]:
|
|
embedding = api_response["embeddings"][0]
|
|
if len(embedding) != self.embedding_dimension:
|
|
logger.warning(f"API returned embedding of dimension {len(embedding)}, but expected {self.embedding_dimension} for model {self.model_name}. Adjusting config might be needed.")
|
|
return embedding
|
|
else:
|
|
raise ValueError(f"Unexpected API response structure: {api_response}")
|
|
|
|
except aiohttp.ClientError as e:
|
|
raise ConnectionError(f"API request failed: {e}") from e
|
|
except ValueError as e:
|
|
raise ValueError(f"Error processing API response: {e}") from e
|
|
|
|
|
|
async def embed_query(self, text: str) -> List[float]:
|
|
"""Asynchronously embeds a single query text."""
|
|
results = await self.embed_documents([text])
|
|
if results:
|
|
return results[0]
|
|
return [] # Or raise an error if embedding a query must always succeed
|
|
|
|
# --- Embedding Model Configuration ---
|
|
EMBEDDING_MODEL_CONFIGS: Dict[str, Dict[str, Any]] = {
|
|
"MiniLM": { # Example for a local Sentence Transformer model
|
|
"type": "sentence_transformer",
|
|
"model_name": "sentence-transformers/all-MiniLM-L6-v2"
|
|
},
|
|
"bge-m3": { # Example for a third-party API model
|
|
"type": "third_party_api",
|
|
"model_name": "bge-m3",
|
|
"api_endpoint": "https://api.qhaigc.net/v1/embeddings",
|
|
"headers": {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {os.getenv('rag_api_key')}"
|
|
},
|
|
"payload_template": {
|
|
"model": "bge-m3",
|
|
"input": ""
|
|
},
|
|
"embedding_dimension": 1024
|
|
},
|
|
"OpenAI-Ada-002": {
|
|
"type": "third_party_api",
|
|
"model_name": "text-embedding-ada-002",
|
|
"api_endpoint": "https://api.openai.com/v1/embeddings",
|
|
"headers": {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}" # Ensure OPENAI_API_KEY is set
|
|
},
|
|
"payload_template": {
|
|
"model": "text-embedding-ada-002",
|
|
"input": "" # Text will be injected here
|
|
},
|
|
"embedding_dimension": 1536
|
|
},
|
|
"OpenAI-Embedding-3-Small": {
|
|
"type": "third_party_api",
|
|
"model_name": "text-embedding-3-small",
|
|
"api_endpoint": "https://api.openai.com/v1/embeddings",
|
|
"headers": {
|
|
"Content-Type": "application/json",
|
|
"Authorization": f"Bearer {os.getenv('OPENAI_API_KEY')}"
|
|
},
|
|
"payload_template": {
|
|
"model": "text-embedding-3-small",
|
|
"input": "",
|
|
# "dimensions": 512 # Optional: uncomment if you want a specific output dimension
|
|
},
|
|
"embedding_dimension": 1536 # Default max dimension for text-embedding-3-small
|
|
},
|
|
} |