mirror of
https://github.com/langbot-app/LangBot.git
synced 2025-11-25 19:37:36 +08:00
139 lines
4.3 KiB
Python
139 lines
4.3 KiB
Python
from __future__ import annotations
|
|
|
|
import json
|
|
import copy
|
|
import typing
|
|
from .. import runner
|
|
from ...core import entities as core_entities
|
|
from .. import entities as llm_entities
|
|
|
|
|
|
rag_combined_prompt_template = """
|
|
The following are relevant context entries retrieved from the knowledge base.
|
|
Please use them to answer the user's message.
|
|
Respond in the same language as the user's input.
|
|
|
|
<context>
|
|
{rag_context}
|
|
</context>
|
|
|
|
<user_message>
|
|
{user_message}
|
|
</user_message>
|
|
"""
|
|
|
|
|
|
@runner.runner_class('local-agent')
|
|
class LocalAgentRunner(runner.RequestRunner):
|
|
"""本地Agent请求运行器"""
|
|
|
|
async def run(self, query: core_entities.Query) -> typing.AsyncGenerator[llm_entities.Message, None]:
|
|
"""运行请求"""
|
|
pending_tool_calls = []
|
|
|
|
kb_uuid = query.pipeline_config['ai']['local-agent']['knowledge-base']
|
|
|
|
if kb_uuid == '__none__':
|
|
kb_uuid = None
|
|
|
|
user_message = copy.deepcopy(query.user_message)
|
|
|
|
user_message_text = ''
|
|
|
|
if isinstance(user_message.content, str):
|
|
user_message_text = user_message.content
|
|
elif isinstance(user_message.content, list):
|
|
for ce in user_message.content:
|
|
if ce.type == 'text':
|
|
user_message_text += ce.text
|
|
break
|
|
|
|
if kb_uuid and user_message_text:
|
|
# only support text for now
|
|
kb = await self.ap.rag_mgr.get_knowledge_base_by_uuid(kb_uuid)
|
|
|
|
if not kb:
|
|
self.ap.logger.warning(f'Knowledge base {kb_uuid} not found')
|
|
raise ValueError(f'Knowledge base {kb_uuid} not found')
|
|
|
|
result = await kb.retrieve(user_message_text, kb.knowledge_base_entity.top_k)
|
|
|
|
final_user_message_text = ''
|
|
|
|
if result:
|
|
rag_context = '\n\n'.join(
|
|
f'[{i + 1}] {entry.metadata.get("text", "")}' for i, entry in enumerate(result)
|
|
)
|
|
final_user_message_text = rag_combined_prompt_template.format(
|
|
rag_context=rag_context, user_message=user_message_text
|
|
)
|
|
|
|
else:
|
|
final_user_message_text = user_message_text
|
|
|
|
self.ap.logger.debug(f'Final user message text: {final_user_message_text}')
|
|
|
|
for ce in user_message.content:
|
|
if ce.type == 'text':
|
|
ce.text = final_user_message_text
|
|
break
|
|
|
|
req_messages = query.prompt.messages.copy() + query.messages.copy() + [user_message]
|
|
|
|
# 首次请求
|
|
msg = await query.use_llm_model.requester.invoke_llm(
|
|
query,
|
|
query.use_llm_model,
|
|
req_messages,
|
|
query.use_funcs,
|
|
extra_args=query.use_llm_model.model_entity.extra_args,
|
|
)
|
|
|
|
yield msg
|
|
|
|
pending_tool_calls = msg.tool_calls
|
|
|
|
req_messages.append(msg)
|
|
|
|
# 持续请求,只要还有待处理的工具调用就继续处理调用
|
|
while pending_tool_calls:
|
|
for tool_call in pending_tool_calls:
|
|
try:
|
|
func = tool_call.function
|
|
|
|
parameters = json.loads(func.arguments)
|
|
|
|
func_ret = await self.ap.tool_mgr.execute_func_call(query, func.name, parameters)
|
|
|
|
msg = llm_entities.Message(
|
|
role='tool',
|
|
content=json.dumps(func_ret, ensure_ascii=False),
|
|
tool_call_id=tool_call.id,
|
|
)
|
|
|
|
yield msg
|
|
|
|
req_messages.append(msg)
|
|
except Exception as e:
|
|
# 工具调用出错,添加一个报错信息到 req_messages
|
|
err_msg = llm_entities.Message(role='tool', content=f'err: {e}', tool_call_id=tool_call.id)
|
|
|
|
yield err_msg
|
|
|
|
req_messages.append(err_msg)
|
|
|
|
# 处理完所有调用,再次请求
|
|
msg = await query.use_llm_model.requester.invoke_llm(
|
|
query,
|
|
query.use_llm_model,
|
|
req_messages,
|
|
query.use_funcs,
|
|
extra_args=query.use_llm_model.model_entity.extra_args,
|
|
)
|
|
|
|
yield msg
|
|
|
|
pending_tool_calls = msg.tool_calls
|
|
|
|
req_messages.append(msg)
|