Files
LangBot/pkg/provider/modelmgr/requesters/modelscopechatcmpl.py
2025-08-17 23:34:01 +08:00

387 lines
15 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from __future__ import annotations
import asyncio
import json
import typing
import openai
import openai.types.chat.chat_completion as chat_completion
import openai.types.chat.chat_completion_message_tool_call as chat_completion_message_tool_call
import httpx
from .. import entities, errors, requester
from ....core import entities as core_entities
from ... import entities as llm_entities
from ...tools import entities as tools_entities
class ModelScopeChatCompletions(requester.ProviderAPIRequester):
"""ModelScope ChatCompletion API 请求器"""
client: openai.AsyncClient
default_config: dict[str, typing.Any] = {
'base_url': 'https://api-inference.modelscope.cn/v1',
'timeout': 120,
}
async def initialize(self):
self.client = openai.AsyncClient(
api_key='',
base_url=self.requester_cfg['base_url'],
timeout=self.requester_cfg['timeout'],
http_client=httpx.AsyncClient(trust_env=True, timeout=self.requester_cfg['timeout']),
)
async def _req(
self,
query: core_entities.Query,
args: dict,
extra_body: dict = {},
remove_think: bool = False,
) -> list[dict[str, typing.Any]]:
args['stream'] = True
chunk = None
pending_content = ''
tool_calls = []
resp_gen: openai.AsyncStream = await self.client.chat.completions.create(**args, extra_body=extra_body)
chunk_idx = 0
thinking_started = False
thinking_ended = False
tool_id = ''
tool_name = ''
message_delta = {}
async for chunk in resp_gen:
if not chunk or not chunk.id or not chunk.choices or not chunk.choices[0] or not chunk.choices[0].delta:
continue
delta = chunk.choices[0].delta.model_dump() if hasattr(chunk.choices[0], 'delta') else {}
reasoning_content = delta.get('reasoning_content')
# 处理 reasoning_content
if reasoning_content:
# accumulated_reasoning += reasoning_content
# 如果设置了 remove_think跳过 reasoning_content
if remove_think:
chunk_idx += 1
continue
# 第一次出现 reasoning_content添加 <think> 开始标签
if not thinking_started:
thinking_started = True
pending_content += '<think>\n' + reasoning_content
else:
# 继续输出 reasoning_content
pending_content += reasoning_content
elif thinking_started and not thinking_ended and delta.get('content'):
# reasoning_content 结束normal content 开始,添加 </think> 结束标签
thinking_ended = True
pending_content += '\n</think>\n' + delta.get('content')
if delta.get('content') is not None:
pending_content += delta.get('content')
if delta.get('tool_calls') is not None:
for tool_call in delta.get('tool_calls'):
if tool_call['id'] != '':
tool_id = tool_call['id']
if tool_call['function']['name'] is not None:
tool_name = tool_call['function']['name']
if tool_call['function']['arguments'] is None:
continue
tool_call['id'] = tool_id
tool_call['name'] = tool_name
for tc in tool_calls:
if tc['index'] == tool_call['index']:
tc['function']['arguments'] += tool_call['function']['arguments']
break
else:
tool_calls.append(tool_call)
if chunk.choices[0].finish_reason is not None:
break
message_delta['content'] = pending_content
message_delta['role'] = 'assistant'
message_delta['tool_calls'] = tool_calls if tool_calls else None
return [message_delta]
async def _make_msg(
self,
chat_completion: list[dict[str, typing.Any]],
) -> llm_entities.Message:
chatcmpl_message = chat_completion[0]
# 确保 role 字段存在且不为 None
if 'role' not in chatcmpl_message or chatcmpl_message['role'] is None:
chatcmpl_message['role'] = 'assistant'
message = llm_entities.Message(**chatcmpl_message)
return message
async def _closure(
self,
query: core_entities.Query,
req_messages: list[dict],
use_model: requester.RuntimeLLMModel,
use_funcs: list[tools_entities.LLMFunction] = None,
extra_args: dict[str, typing.Any] = {},
remove_think:bool = False,
) -> llm_entities.Message:
self.client.api_key = use_model.token_mgr.get_token()
args = {}
args['model'] = use_model.model_entity.name
if use_funcs:
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
if tools:
args['tools'] = tools
# 设置此次请求中的messages
messages = req_messages.copy()
# 检查vision
for msg in messages:
if 'content' in msg and isinstance(msg['content'], list):
for me in msg['content']:
if me['type'] == 'image_base64':
me['image_url'] = {'url': me['image_base64']}
me['type'] = 'image_url'
del me['image_base64']
args['messages'] = messages
# 发送请求
resp = await self._req(query, args, extra_body=extra_args, remove_think=remove_think)
# 处理请求结果
message = await self._make_msg(resp)
return message
async def _req_stream(
self,
args: dict,
extra_body: dict = {},
) -> chat_completion.ChatCompletion:
async for chunk in await self.client.chat.completions.create(**args, extra_body=extra_body):
yield chunk
async def _closure_stream(
self,
query: core_entities.Query,
req_messages: list[dict],
use_model: requester.RuntimeLLMModel,
use_funcs: list[tools_entities.LLMFunction] = None,
extra_args: dict[str, typing.Any] = {},
remove_think: bool = False,
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
self.client.api_key = use_model.token_mgr.get_token()
args = {}
args['model'] = use_model.model_entity.name
if use_funcs:
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
if tools:
args['tools'] = tools
# 设置此次请求中的messages
messages = req_messages.copy()
# 检查vision
for msg in messages:
if 'content' in msg and isinstance(msg['content'], list):
for me in msg['content']:
if me['type'] == 'image_base64':
me['image_url'] = {'url': me['image_base64']}
me['type'] = 'image_url'
del me['image_base64']
args['messages'] = messages
args['stream'] = True
# 流式处理状态
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
chunk_idx = 0
thinking_started = False
thinking_ended = False
role = 'assistant' # 默认角色
# accumulated_reasoning = '' # 仅用于判断何时结束思维链
async for chunk in self._req_stream(args, extra_body=extra_args):
# 解析 chunk 数据
if hasattr(chunk, 'choices') and chunk.choices:
choice = chunk.choices[0]
delta = choice.delta.model_dump() if hasattr(choice, 'delta') else {}
finish_reason = getattr(choice, 'finish_reason', None)
else:
delta = {}
finish_reason = None
# 从第一个 chunk 获取 role后续使用这个 role
if 'role' in delta and delta['role']:
role = delta['role']
# 获取增量内容
delta_content = delta.get('content', '')
reasoning_content = delta.get('reasoning_content', '')
# 处理 reasoning_content
if reasoning_content:
# accumulated_reasoning += reasoning_content
# 如果设置了 remove_think跳过 reasoning_content
if remove_think:
chunk_idx += 1
continue
# 第一次出现 reasoning_content添加 <think> 开始标签
if not thinking_started:
thinking_started = True
delta_content = '<think>\n' + reasoning_content
else:
# 继续输出 reasoning_content
delta_content = reasoning_content
elif thinking_started and not thinking_ended and delta_content:
# reasoning_content 结束normal content 开始,添加 </think> 结束标签
thinking_ended = True
delta_content = '\n</think>\n' + delta_content
# 处理 content 中已有的 <think> 标签(如果需要移除)
# if delta_content and remove_think and '<think>' in delta_content:
# import re
#
# # 移除 <think> 标签及其内容
# delta_content = re.sub(r'<think>.*?</think>', '', delta_content, flags=re.DOTALL)
# 处理工具调用增量
if delta.get('tool_calls'):
for tool_call in delta['tool_calls']:
if tool_call['id'] != '':
tool_id = tool_call['id']
if tool_call['function']['name'] is not None:
tool_name = tool_call['function']['name']
if tool_call['type'] is None:
tool_call['type'] = 'function'
tool_call['id'] = tool_id
tool_call['function']['name'] = tool_name
tool_call['function']['arguments'] = "" if tool_call['function']['arguments'] is None else tool_call['function']['arguments']
# 跳过空的第一个 chunk只有 role 没有内容)
if chunk_idx == 0 and not delta_content and not reasoning_content and not delta.get('tool_calls'):
chunk_idx += 1
continue
# 构建 MessageChunk - 只包含增量内容
chunk_data = {
'role': role,
'content': delta_content if delta_content else None,
'tool_calls': delta.get('tool_calls'),
'is_final': bool(finish_reason),
}
# 移除 None 值
chunk_data = {k: v for k, v in chunk_data.items() if v is not None}
yield llm_entities.MessageChunk(**chunk_data)
chunk_idx += 1
# return
async def invoke_llm(
self,
query: core_entities.Query,
model: entities.LLMModelInfo,
messages: typing.List[llm_entities.Message],
funcs: typing.List[tools_entities.LLMFunction] = None,
extra_args: dict[str, typing.Any] = {},
remove_think: bool = False,
) -> llm_entities.Message:
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
for m in messages:
msg_dict = m.dict(exclude_none=True)
content = msg_dict.get('content')
if isinstance(content, list):
# 检查 content 列表中是否每个部分都是文本
if all(isinstance(part, dict) and part.get('type') == 'text' for part in content):
# 将所有文本部分合并为一个字符串
msg_dict['content'] = '\n'.join(part['text'] for part in content)
req_messages.append(msg_dict)
try:
return await self._closure(
query=query, req_messages=req_messages, use_model=model, use_funcs=funcs, extra_args=extra_args, remove_think=remove_think
)
except asyncio.TimeoutError:
raise errors.RequesterError('请求超时')
except openai.BadRequestError as e:
if 'context_length_exceeded' in e.message:
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
else:
raise errors.RequesterError(f'请求参数错误: {e.message}')
except openai.AuthenticationError as e:
raise errors.RequesterError(f'无效的 api-key: {e.message}')
except openai.NotFoundError as e:
raise errors.RequesterError(f'请求路径错误: {e.message}')
except openai.RateLimitError as e:
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
except openai.APIError as e:
raise errors.RequesterError(f'请求错误: {e.message}')
async def invoke_llm_stream(
self,
query: core_entities.Query,
model: requester.RuntimeLLMModel,
messages: typing.List[llm_entities.Message],
funcs: typing.List[tools_entities.LLMFunction] = None,
extra_args: dict[str, typing.Any] = {},
remove_think: bool = False,
) -> llm_entities.MessageChunk:
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
for m in messages:
msg_dict = m.dict(exclude_none=True)
content = msg_dict.get('content')
if isinstance(content, list):
# 检查 content 列表中是否每个部分都是文本
if all(isinstance(part, dict) and part.get('type') == 'text' for part in content):
# 将所有文本部分合并为一个字符串
msg_dict['content'] = '\n'.join(part['text'] for part in content)
req_messages.append(msg_dict)
try:
async for item in self._closure_stream(
query=query,
req_messages=req_messages,
use_model=model,
use_funcs=funcs,
extra_args=extra_args,
remove_think=remove_think,
):
yield item
except asyncio.TimeoutError:
raise errors.RequesterError('请求超时')
except openai.BadRequestError as e:
if 'context_length_exceeded' in e.message:
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
else:
raise errors.RequesterError(f'请求参数错误: {e.message}')
except openai.AuthenticationError as e:
raise errors.RequesterError(f'无效的 api-key: {e.message}')
except openai.NotFoundError as e:
raise errors.RequesterError(f'请求路径错误: {e.message}')
except openai.RateLimitError as e:
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
except openai.APIError as e:
raise errors.RequesterError(f'请求错误: {e.message}')