Files
LangBot/pkg/provider/modelmgr/requesters/ppiochatcmpl.py

214 lines
7.5 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from __future__ import annotations
import openai
import typing
from . import chatcmpl
import openai.types.chat.chat_completion as chat_completion
from .. import requester
from ....core import entities as core_entities
from ... import entities as llm_entities
from ...tools import entities as tools_entities
import re
class PPIOChatCompletions(chatcmpl.OpenAIChatCompletions):
"""欧派云 ChatCompletion API 请求器"""
client: openai.AsyncClient
default_config: dict[str, typing.Any] = {
'base_url': 'https://api.ppinfra.com/v3/openai',
'timeout': 120,
}
is_think: bool = False
async def _make_msg(
self,
chat_completion: chat_completion.ChatCompletion,
remove_think: bool,
) -> llm_entities.Message:
chatcmpl_message = chat_completion.choices[0].message.model_dump()
# print(chatcmpl_message.keys(), chatcmpl_message.values())
# 确保 role 字段存在且不为 None
if 'role' not in chatcmpl_message or chatcmpl_message['role'] is None:
chatcmpl_message['role'] = 'assistant'
reasoning_content = chatcmpl_message['reasoning_content'] if 'reasoning_content' in chatcmpl_message else None
# deepseek的reasoner模型
chatcmpl_message["content"] = await self._process_thinking_content(
chatcmpl_message['content'],reasoning_content,remove_think)
# 移除 reasoning_content 字段,避免传递给 Message
if 'reasoning_content' in chatcmpl_message:
del chatcmpl_message['reasoning_content']
message = llm_entities.Message(**chatcmpl_message)
return message
async def _process_thinking_content(
self,
content: str,
reasoning_content: str = None,
remove_think: bool = False,
) -> tuple[str, str]:
"""处理思维链内容
Args:
content: 原始内容
reasoning_content: reasoning_content 字段内容
remove_think: 是否移除思维链
Returns:
处理后的内容
"""
if remove_think:
content = re.sub(
r'<think>.*?</think>', '', content, flags=re.DOTALL
)
else:
if reasoning_content is not None:
content = (
'<think>\n' + reasoning_content + '\n</think>\n' + content
)
return content
async def _make_msg_chunk(
self,
delta: dict[str, typing.Any],
idx: int,
) -> llm_entities.MessageChunk:
# 处理流式chunk和完整响应的差异
# print(chat_completion.choices[0])
# 确保 role 字段存在且不为 None
if 'role' not in delta or delta['role'] is None:
delta['role'] = 'assistant'
reasoning_content = delta['reasoning_content'] if 'reasoning_content' in delta else None
delta['content'] = '' if delta['content'] is None else delta['content']
# print(reasoning_content)
# deepseek的reasoner模型
if reasoning_content is not None:
delta['content'] += reasoning_content
message = llm_entities.MessageChunk(**delta)
return message
async def _closure_stream(
self,
query: core_entities.Query,
req_messages: list[dict],
use_model: requester.RuntimeLLMModel,
use_funcs: list[tools_entities.LLMFunction] = None,
extra_args: dict[str, typing.Any] = {},
remove_think: bool = False,
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
self.client.api_key = use_model.token_mgr.get_token()
args = {}
args['model'] = use_model.model_entity.name
if use_funcs:
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
if tools:
args['tools'] = tools
# 设置此次请求中的messages
messages = req_messages.copy()
# 检查vision
for msg in messages:
if 'content' in msg and isinstance(msg['content'], list):
for me in msg['content']:
if me['type'] == 'image_base64':
me['image_url'] = {'url': me['image_base64']}
me['type'] = 'image_url'
del me['image_base64']
args['messages'] = messages
args['stream'] = True
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
chunk_idx = 0
thinking_started = False
thinking_ended = False
role = 'assistant' # 默认角色
async for chunk in self._req_stream(args, extra_body=extra_args):
# 解析 chunk 数据
if hasattr(chunk, 'choices') and chunk.choices:
choice = chunk.choices[0]
delta = choice.delta.model_dump() if hasattr(choice, 'delta') else {}
finish_reason = getattr(choice, 'finish_reason', None)
else:
delta = {}
finish_reason = None
# 从第一个 chunk 获取 role后续使用这个 role
if 'role' in delta and delta['role']:
role = delta['role']
# 获取增量内容
delta_content = delta.get('content', '')
# reasoning_content = delta.get('reasoning_content', '')
if remove_think:
if delta['content'] is not None:
if '<think>' in delta['content'] and not thinking_started and not thinking_ended:
thinking_started = True
continue
elif delta['content'] == r'</think>' and not thinking_ended:
thinking_ended = True
continue
elif thinking_ended and delta['content'] == '\n\n' and thinking_started:
thinking_started = False
continue
elif thinking_started and not thinking_ended:
continue
delta_tool_calls = None
if delta.get('tool_calls'):
for tool_call in delta['tool_calls']:
if tool_call['id'] and tool_call['function']['name']:
tool_id = tool_call['id']
tool_name = tool_call['function']['name']
if tool_call['id'] is None:
tool_call['id'] = tool_id
if tool_call['function']['name'] is None:
tool_call['function']['name'] = tool_name
if tool_call['function']['arguments'] is None:
tool_call['function']['arguments'] = ''
if tool_call['type'] is None:
tool_call['type'] = 'function'
# 跳过空的第一个 chunk只有 role 没有内容)
if chunk_idx == 0 and not delta_content and not delta.get('tool_calls'):
chunk_idx += 1
continue
# 构建 MessageChunk - 只包含增量内容
chunk_data = {
'role': role,
'content': delta_content if delta_content else None,
'tool_calls': delta.get('tool_calls'),
'is_final': bool(finish_reason),
}
# 移除 None 值
chunk_data = {k: v for k, v in chunk_data.items() if v is not None}
yield llm_entities.MessageChunk(**chunk_data)
chunk_idx += 1