Files
LangBot/pkg/pipeline/preproc/preproc.py
2025-10-10 16:34:01 +08:00

139 lines
5.5 KiB
Python

from __future__ import annotations
import datetime
from .. import stage, entities
from langbot_plugin.api.entities.builtin.provider import message as provider_message
import langbot_plugin.api.entities.events as events
import langbot_plugin.api.entities.builtin.platform.message as platform_message
import langbot_plugin.api.entities.builtin.pipeline.query as pipeline_query
@stage.stage_class('PreProcessor')
class PreProcessor(stage.PipelineStage):
"""Request pre-processing stage
Check out session, prompt, context, model, and content functions.
Rewrite:
- session
- prompt
- messages
- user_message
- use_model
- use_funcs
"""
async def process(
self,
query: pipeline_query.Query,
stage_inst_name: str,
) -> entities.StageProcessResult:
"""Process"""
selected_runner = query.pipeline_config['ai']['runner']['runner']
session = await self.ap.sess_mgr.get_session(query)
# When not local-agent, llm_model is None
try:
llm_model = (
await self.ap.model_mgr.get_model_by_uuid(query.pipeline_config['ai']['local-agent']['model'])
if selected_runner == 'local-agent'
else None
)
except ValueError:
self.ap.logger.warning(
f'LLM model {query.pipeline_config["ai"]["local-agent"]["model"] + " "}not found or not configured'
)
llm_model = None
conversation = await self.ap.sess_mgr.get_conversation(
query,
session,
query.pipeline_config['ai']['local-agent']['prompt'],
query.pipeline_uuid,
query.bot_uuid,
)
# 设置query
query.session = session
query.prompt = conversation.prompt.copy()
query.messages = conversation.messages.copy()
if selected_runner == 'local-agent' and llm_model:
query.use_funcs = []
query.use_llm_model_uuid = llm_model.model_entity.uuid
if llm_model.model_entity.abilities.__contains__('func_call'):
query.use_funcs = await self.ap.tool_mgr.get_all_tools()
variables = {
'session_id': f'{query.session.launcher_type.value}_{query.session.launcher_id}',
'conversation_id': conversation.uuid,
'msg_create_time': (
int(query.message_event.time) if query.message_event.time else int(datetime.datetime.now().timestamp())
),
}
query.variables.update(variables)
# Check if this model supports vision, if not, remove all images
# TODO this checking should be performed in runner, and in this stage, the image should be reserved
if (
selected_runner == 'local-agent'
and llm_model
and not llm_model.model_entity.abilities.__contains__('vision')
):
for msg in query.messages:
if isinstance(msg.content, list):
for me in msg.content:
if me.type == 'image_url':
msg.content.remove(me)
content_list: list[provider_message.ContentElement] = []
plain_text = ''
qoute_msg = query.pipeline_config['trigger'].get('misc', '').get('combine-quote-message')
for me in query.message_chain:
if isinstance(me, platform_message.Plain):
content_list.append(provider_message.ContentElement.from_text(me.text))
plain_text += me.text
elif isinstance(me, platform_message.Image):
if selected_runner != 'local-agent' or (
llm_model and llm_model.model_entity.abilities.__contains__('vision')
):
if me.base64 is not None:
content_list.append(provider_message.ContentElement.from_image_base64(me.base64))
elif isinstance(me, platform_message.File):
# if me.url is not None:
content_list.append(provider_message.ContentElement.from_file_url(me.url, me.name))
elif isinstance(me, platform_message.Quote) and qoute_msg:
for msg in me.origin:
if isinstance(msg, platform_message.Plain):
content_list.append(provider_message.ContentElement.from_text(msg.text))
elif isinstance(msg, platform_message.Image):
if selected_runner != 'local-agent' or (
llm_model and llm_model.model_entity.abilities.__contains__('vision')
):
if msg.base64 is not None:
content_list.append(provider_message.ContentElement.from_image_base64(msg.base64))
query.variables['user_message_text'] = plain_text
query.user_message = provider_message.Message(role='user', content=content_list)
# =========== 触发事件 PromptPreProcessing
event = events.PromptPreProcessing(
session_name=f'{query.session.launcher_type.value}_{query.session.launcher_id}',
default_prompt=query.prompt.messages,
prompt=query.messages,
query=query,
)
event_ctx = await self.ap.plugin_connector.emit_event(event)
query.prompt.messages = event_ctx.event.default_prompt
query.messages = event_ctx.event.prompt
return entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)