mirror of
https://github.com/harry0703/MoneyPrinterTurbo.git
synced 2025-11-25 11:29:36 +08:00
* feat: add provider ai pollinations * update: enter line --------- Co-authored-by: Diep Do <diepchiaser@gmail.com>
444 lines
18 KiB
Python
444 lines
18 KiB
Python
import json
|
|
import logging
|
|
import re
|
|
import requests
|
|
from typing import List
|
|
|
|
import g4f
|
|
from loguru import logger
|
|
from openai import AzureOpenAI, OpenAI
|
|
from openai.types.chat import ChatCompletion
|
|
|
|
from app.config import config
|
|
|
|
_max_retries = 5
|
|
|
|
|
|
def _generate_response(prompt: str) -> str:
|
|
try:
|
|
content = ""
|
|
llm_provider = config.app.get("llm_provider", "openai")
|
|
logger.info(f"llm provider: {llm_provider}")
|
|
if llm_provider == "g4f":
|
|
model_name = config.app.get("g4f_model_name", "")
|
|
if not model_name:
|
|
model_name = "gpt-3.5-turbo-16k-0613"
|
|
content = g4f.ChatCompletion.create(
|
|
model=model_name,
|
|
messages=[{"role": "user", "content": prompt}],
|
|
)
|
|
else:
|
|
api_version = "" # for azure
|
|
if llm_provider == "moonshot":
|
|
api_key = config.app.get("moonshot_api_key")
|
|
model_name = config.app.get("moonshot_model_name")
|
|
base_url = "https://api.moonshot.cn/v1"
|
|
elif llm_provider == "ollama":
|
|
# api_key = config.app.get("openai_api_key")
|
|
api_key = "ollama" # any string works but you are required to have one
|
|
model_name = config.app.get("ollama_model_name")
|
|
base_url = config.app.get("ollama_base_url", "")
|
|
if not base_url:
|
|
base_url = "http://localhost:11434/v1"
|
|
elif llm_provider == "openai":
|
|
api_key = config.app.get("openai_api_key")
|
|
model_name = config.app.get("openai_model_name")
|
|
base_url = config.app.get("openai_base_url", "")
|
|
if not base_url:
|
|
base_url = "https://api.openai.com/v1"
|
|
elif llm_provider == "oneapi":
|
|
api_key = config.app.get("oneapi_api_key")
|
|
model_name = config.app.get("oneapi_model_name")
|
|
base_url = config.app.get("oneapi_base_url", "")
|
|
elif llm_provider == "azure":
|
|
api_key = config.app.get("azure_api_key")
|
|
model_name = config.app.get("azure_model_name")
|
|
base_url = config.app.get("azure_base_url", "")
|
|
api_version = config.app.get("azure_api_version", "2024-02-15-preview")
|
|
elif llm_provider == "gemini":
|
|
api_key = config.app.get("gemini_api_key")
|
|
model_name = config.app.get("gemini_model_name")
|
|
base_url = "***"
|
|
elif llm_provider == "qwen":
|
|
api_key = config.app.get("qwen_api_key")
|
|
model_name = config.app.get("qwen_model_name")
|
|
base_url = "***"
|
|
elif llm_provider == "cloudflare":
|
|
api_key = config.app.get("cloudflare_api_key")
|
|
model_name = config.app.get("cloudflare_model_name")
|
|
account_id = config.app.get("cloudflare_account_id")
|
|
base_url = "***"
|
|
elif llm_provider == "deepseek":
|
|
api_key = config.app.get("deepseek_api_key")
|
|
model_name = config.app.get("deepseek_model_name")
|
|
base_url = config.app.get("deepseek_base_url")
|
|
if not base_url:
|
|
base_url = "https://api.deepseek.com"
|
|
elif llm_provider == "ernie":
|
|
api_key = config.app.get("ernie_api_key")
|
|
secret_key = config.app.get("ernie_secret_key")
|
|
base_url = config.app.get("ernie_base_url")
|
|
model_name = "***"
|
|
if not secret_key:
|
|
raise ValueError(
|
|
f"{llm_provider}: secret_key is not set, please set it in the config.toml file."
|
|
)
|
|
elif llm_provider == "pollinations":
|
|
try:
|
|
base_url = config.app.get("pollinations_base_url", "")
|
|
if not base_url:
|
|
base_url = "https://text.pollinations.ai/openai"
|
|
model_name = config.app.get("pollinations_model_name", "openai-fast")
|
|
|
|
# Prepare the payload
|
|
payload = {
|
|
"model": model_name,
|
|
"messages": [
|
|
{"role": "user", "content": prompt}
|
|
],
|
|
"seed": 101 # Optional but helps with reproducibility
|
|
}
|
|
|
|
# Optional parameters if configured
|
|
if config.app.get("pollinations_private"):
|
|
payload["private"] = True
|
|
if config.app.get("pollinations_referrer"):
|
|
payload["referrer"] = config.app.get("pollinations_referrer")
|
|
|
|
headers = {
|
|
"Content-Type": "application/json"
|
|
}
|
|
|
|
# Make the API request
|
|
response = requests.post(base_url, headers=headers, json=payload)
|
|
response.raise_for_status()
|
|
result = response.json()
|
|
|
|
if result and "choices" in result and len(result["choices"]) > 0:
|
|
content = result["choices"][0]["message"]["content"]
|
|
return content.replace("\n", "")
|
|
else:
|
|
raise Exception(f"[{llm_provider}] returned an invalid response format")
|
|
|
|
except requests.exceptions.RequestException as e:
|
|
raise Exception(f"[{llm_provider}] request failed: {str(e)}")
|
|
except Exception as e:
|
|
raise Exception(f"[{llm_provider}] error: {str(e)}")
|
|
|
|
if llm_provider not in ["pollinations", "ollama"]: # Skip validation for providers that don't require API key
|
|
if not api_key:
|
|
raise ValueError(
|
|
f"{llm_provider}: api_key is not set, please set it in the config.toml file."
|
|
)
|
|
if not model_name:
|
|
raise ValueError(
|
|
f"{llm_provider}: model_name is not set, please set it in the config.toml file."
|
|
)
|
|
if not base_url:
|
|
raise ValueError(
|
|
f"{llm_provider}: base_url is not set, please set it in the config.toml file."
|
|
)
|
|
|
|
if llm_provider == "qwen":
|
|
import dashscope
|
|
from dashscope.api_entities.dashscope_response import GenerationResponse
|
|
|
|
dashscope.api_key = api_key
|
|
response = dashscope.Generation.call(
|
|
model=model_name, messages=[{"role": "user", "content": prompt}]
|
|
)
|
|
if response:
|
|
if isinstance(response, GenerationResponse):
|
|
status_code = response.status_code
|
|
if status_code != 200:
|
|
raise Exception(
|
|
f'[{llm_provider}] returned an error response: "{response}"'
|
|
)
|
|
|
|
content = response["output"]["text"]
|
|
return content.replace("\n", "")
|
|
else:
|
|
raise Exception(
|
|
f'[{llm_provider}] returned an invalid response: "{response}"'
|
|
)
|
|
else:
|
|
raise Exception(f"[{llm_provider}] returned an empty response")
|
|
|
|
if llm_provider == "gemini":
|
|
import google.generativeai as genai
|
|
|
|
genai.configure(api_key=api_key, transport="rest")
|
|
|
|
generation_config = {
|
|
"temperature": 0.5,
|
|
"top_p": 1,
|
|
"top_k": 1,
|
|
"max_output_tokens": 2048,
|
|
}
|
|
|
|
safety_settings = [
|
|
{
|
|
"category": "HARM_CATEGORY_HARASSMENT",
|
|
"threshold": "BLOCK_ONLY_HIGH",
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_HATE_SPEECH",
|
|
"threshold": "BLOCK_ONLY_HIGH",
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
|
"threshold": "BLOCK_ONLY_HIGH",
|
|
},
|
|
{
|
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
|
|
"threshold": "BLOCK_ONLY_HIGH",
|
|
},
|
|
]
|
|
|
|
model = genai.GenerativeModel(
|
|
model_name=model_name,
|
|
generation_config=generation_config,
|
|
safety_settings=safety_settings,
|
|
)
|
|
|
|
try:
|
|
response = model.generate_content(prompt)
|
|
candidates = response.candidates
|
|
generated_text = candidates[0].content.parts[0].text
|
|
except (AttributeError, IndexError) as e:
|
|
print("Gemini Error:", e)
|
|
|
|
return generated_text
|
|
|
|
if llm_provider == "cloudflare":
|
|
response = requests.post(
|
|
f"https://api.cloudflare.com/client/v4/accounts/{account_id}/ai/run/{model_name}",
|
|
headers={"Authorization": f"Bearer {api_key}"},
|
|
json={
|
|
"messages": [
|
|
{
|
|
"role": "system",
|
|
"content": "You are a friendly assistant",
|
|
},
|
|
{"role": "user", "content": prompt},
|
|
]
|
|
},
|
|
)
|
|
result = response.json()
|
|
logger.info(result)
|
|
return result["result"]["response"]
|
|
|
|
if llm_provider == "ernie":
|
|
response = requests.post(
|
|
"https://aip.baidubce.com/oauth/2.0/token",
|
|
params={
|
|
"grant_type": "client_credentials",
|
|
"client_id": api_key,
|
|
"client_secret": secret_key,
|
|
}
|
|
)
|
|
access_token = response.json().get("access_token")
|
|
url = f"{base_url}?access_token={access_token}"
|
|
|
|
payload = json.dumps(
|
|
{
|
|
"messages": [{"role": "user", "content": prompt}],
|
|
"temperature": 0.5,
|
|
"top_p": 0.8,
|
|
"penalty_score": 1,
|
|
"disable_search": False,
|
|
"enable_citation": False,
|
|
"response_format": "text",
|
|
}
|
|
)
|
|
headers = {"Content-Type": "application/json"}
|
|
|
|
response = requests.request(
|
|
"POST", url, headers=headers, data=payload
|
|
).json()
|
|
return response.get("result")
|
|
|
|
if llm_provider == "azure":
|
|
client = AzureOpenAI(
|
|
api_key=api_key,
|
|
api_version=api_version,
|
|
azure_endpoint=base_url,
|
|
)
|
|
else:
|
|
client = OpenAI(
|
|
api_key=api_key,
|
|
base_url=base_url,
|
|
)
|
|
|
|
response = client.chat.completions.create(
|
|
model=model_name, messages=[{"role": "user", "content": prompt}]
|
|
)
|
|
if response:
|
|
if isinstance(response, ChatCompletion):
|
|
content = response.choices[0].message.content
|
|
else:
|
|
raise Exception(
|
|
f'[{llm_provider}] returned an invalid response: "{response}", please check your network '
|
|
f"connection and try again."
|
|
)
|
|
else:
|
|
raise Exception(
|
|
f"[{llm_provider}] returned an empty response, please check your network connection and try again."
|
|
)
|
|
|
|
return content.replace("\n", "")
|
|
except Exception as e:
|
|
return f"Error: {str(e)}"
|
|
|
|
|
|
def generate_script(
|
|
video_subject: str, language: str = "", paragraph_number: int = 1
|
|
) -> str:
|
|
prompt = f"""
|
|
# Role: Video Script Generator
|
|
|
|
## Goals:
|
|
Generate a script for a video, depending on the subject of the video.
|
|
|
|
## Constrains:
|
|
1. the script is to be returned as a string with the specified number of paragraphs.
|
|
2. do not under any circumstance reference this prompt in your response.
|
|
3. get straight to the point, don't start with unnecessary things like, "welcome to this video".
|
|
4. you must not include any type of markdown or formatting in the script, never use a title.
|
|
5. only return the raw content of the script.
|
|
6. do not include "voiceover", "narrator" or similar indicators of what should be spoken at the beginning of each paragraph or line.
|
|
7. you must not mention the prompt, or anything about the script itself. also, never talk about the amount of paragraphs or lines. just write the script.
|
|
8. respond in the same language as the video subject.
|
|
|
|
# Initialization:
|
|
- video subject: {video_subject}
|
|
- number of paragraphs: {paragraph_number}
|
|
""".strip()
|
|
if language:
|
|
prompt += f"\n- language: {language}"
|
|
|
|
final_script = ""
|
|
logger.info(f"subject: {video_subject}")
|
|
|
|
def format_response(response):
|
|
# Clean the script
|
|
# Remove asterisks, hashes
|
|
response = response.replace("*", "")
|
|
response = response.replace("#", "")
|
|
|
|
# Remove markdown syntax
|
|
response = re.sub(r"\[.*\]", "", response)
|
|
response = re.sub(r"\(.*\)", "", response)
|
|
|
|
# Split the script into paragraphs
|
|
paragraphs = response.split("\n\n")
|
|
|
|
# Select the specified number of paragraphs
|
|
# selected_paragraphs = paragraphs[:paragraph_number]
|
|
|
|
# Join the selected paragraphs into a single string
|
|
return "\n\n".join(paragraphs)
|
|
|
|
for i in range(_max_retries):
|
|
try:
|
|
response = _generate_response(prompt=prompt)
|
|
if response:
|
|
final_script = format_response(response)
|
|
else:
|
|
logging.error("gpt returned an empty response")
|
|
|
|
# g4f may return an error message
|
|
if final_script and "当日额度已消耗完" in final_script:
|
|
raise ValueError(final_script)
|
|
|
|
if final_script:
|
|
break
|
|
except Exception as e:
|
|
logger.error(f"failed to generate script: {e}")
|
|
|
|
if i < _max_retries:
|
|
logger.warning(f"failed to generate video script, trying again... {i + 1}")
|
|
if "Error: " in final_script:
|
|
logger.error(f"failed to generate video script: {final_script}")
|
|
else:
|
|
logger.success(f"completed: \n{final_script}")
|
|
return final_script.strip()
|
|
|
|
|
|
def generate_terms(video_subject: str, video_script: str, amount: int = 5) -> List[str]:
|
|
prompt = f"""
|
|
# Role: Video Search Terms Generator
|
|
|
|
## Goals:
|
|
Generate {amount} search terms for stock videos, depending on the subject of a video.
|
|
|
|
## Constrains:
|
|
1. the search terms are to be returned as a json-array of strings.
|
|
2. each search term should consist of 1-3 words, always add the main subject of the video.
|
|
3. you must only return the json-array of strings. you must not return anything else. you must not return the script.
|
|
4. the search terms must be related to the subject of the video.
|
|
5. reply with english search terms only.
|
|
|
|
## Output Example:
|
|
["search term 1", "search term 2", "search term 3","search term 4","search term 5"]
|
|
|
|
## Context:
|
|
### Video Subject
|
|
{video_subject}
|
|
|
|
### Video Script
|
|
{video_script}
|
|
|
|
Please note that you must use English for generating video search terms; Chinese is not accepted.
|
|
""".strip()
|
|
|
|
logger.info(f"subject: {video_subject}")
|
|
|
|
search_terms = []
|
|
response = ""
|
|
for i in range(_max_retries):
|
|
try:
|
|
response = _generate_response(prompt)
|
|
if "Error: " in response:
|
|
logger.error(f"failed to generate video script: {response}")
|
|
return response
|
|
search_terms = json.loads(response)
|
|
if not isinstance(search_terms, list) or not all(
|
|
isinstance(term, str) for term in search_terms
|
|
):
|
|
logger.error("response is not a list of strings.")
|
|
continue
|
|
|
|
except Exception as e:
|
|
logger.warning(f"failed to generate video terms: {str(e)}")
|
|
if response:
|
|
match = re.search(r"\[.*]", response)
|
|
if match:
|
|
try:
|
|
search_terms = json.loads(match.group())
|
|
except Exception as e:
|
|
logger.warning(f"failed to generate video terms: {str(e)}")
|
|
pass
|
|
|
|
if search_terms and len(search_terms) > 0:
|
|
break
|
|
if i < _max_retries:
|
|
logger.warning(f"failed to generate video terms, trying again... {i + 1}")
|
|
|
|
logger.success(f"completed: \n{search_terms}")
|
|
return search_terms
|
|
|
|
|
|
if __name__ == "__main__":
|
|
video_subject = "生命的意义是什么"
|
|
script = generate_script(
|
|
video_subject=video_subject, language="zh-CN", paragraph_number=1
|
|
)
|
|
print("######################")
|
|
print(script)
|
|
search_terms = generate_terms(
|
|
video_subject=video_subject, video_script=script, amount=5
|
|
)
|
|
print("######################")
|
|
print(search_terms)
|
|
|