WeKnora

介绍

PipeLine

- 1. 接收请求与初始化
- 2. 知识库问答流程启动
- 3. 事件执行详情

```
事件 1: rewrite_query - 问题改写
```

事件 2: preprocess_query - 问题预处理

事件 3: chunk_search - 知识区块检索

事件 4: chunk_rerank - 结果重排序

事件 5: chunk_merge - 区块合并

事件 6: filter_top_k - Top-K 过滤

事件 7 & 8: into_chat_message & chat_completion_stream - 生成回答

事件 9: stream_filter - 流式输出过滤

4. 完成与响应

总结

文档解析切分

整体架构

详细工作流程

第一步:请求接收与分发 (server.py & parser.py)

第二步:核心解析与分块(base_parser.py)

第三步: 多模态处理(如果启用) (base_parser.py)

第四步:返回结果 (server.py)

部署

性能和监控

QA

问题1: 在检索过程的执行了两次混合搜索的目的是什么? 以及第一次和第二次搜索有什么不同?

目的

两次搜索的不同点

问题2: 重排序模型分析

- 1. Normal Reranker (常规重排器 / 交叉编码器)
- 2. LLM-based Reranker (基于LLM的重排器)
- 3. LLM-based Layerwise Reranker (基于LLM分层信息的重排器)

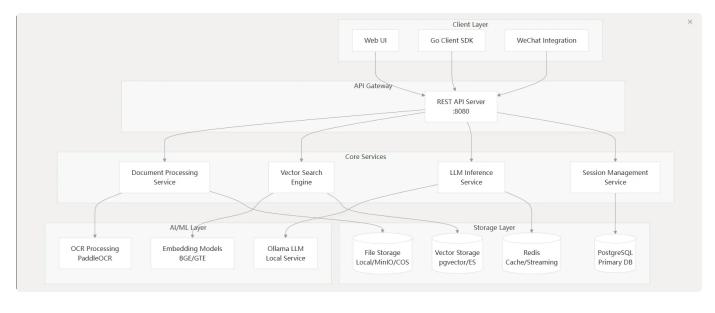
总结对比

使用建议

问题3: 粗过滤或细过滤后的知识(带重排)如何组装发送给大模型的?

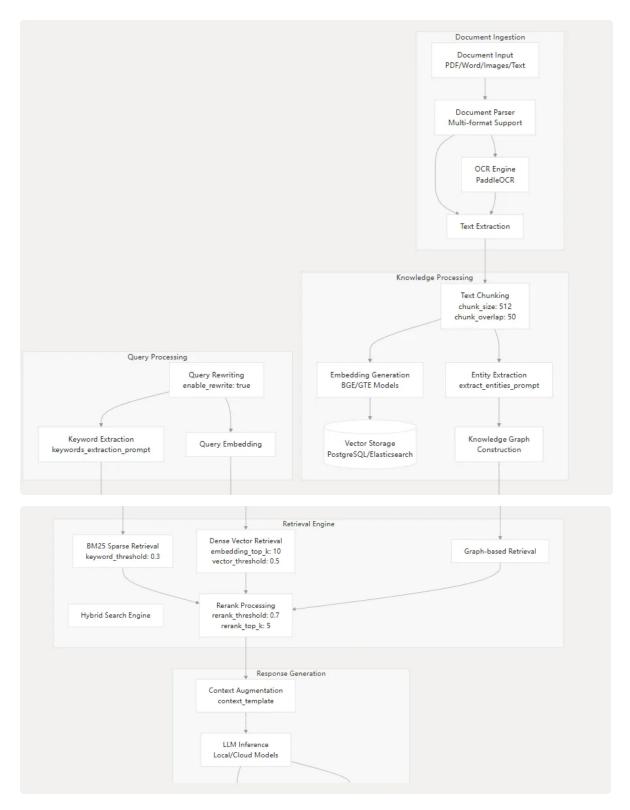
介绍

WeKora 是一个可立即在生产环境投入的企业级RAG框架,实现智能文档理解和检索功能。该系统采用模块化设计,将文档理解、向量存储、推理文件等功能分离。



PipeLine

WeKnora 处理文档需要多个步骤:插入-》知识提取-》索引-》检索-》生成,整个流程支持多种检索方法,



以用户上传的一张住宿流水单pdf文件为例,详细介绍下其数据流:

1. 接收请求与初始化

• 请求识别: 系统收到一个请求,并为其分配了唯一的 request_id=Lkq00GLYu2fV ,用于追踪整个处理流程。

• 租户与会话验证:

- 系统首先验证了租户信息(ID: 1, Name: Default Tenant)。
- 接着开始处理一个知识库问答(Knowledge QA)请求,该请求属于会话 1f241340-ae75-4 0a5-8731-9a3a82e34fdd 。
- 用户问题: 用户的原始问题是: "入住的房型是什么"。
- 消息创建: 系统为用户的提问和即将生成的回答分别创建了消息记录,ID 分别为 703ddf09-... 和 6f057649-... 。

2. 知识库问答流程启动

系统正式调用知识库问答服务,并定义了将要按顺序执行的完整处理管道(Pipeline),包含以下9个事件:

[rewrite_query, preprocess_query, chunk_search, chunk_rerank, chunk_merge,
filter_top_k, into_chat_message, chat_completion_stream, stream_filter]

3. 事件执行详情

事件 1: rewrite_query - 问题改写

- **目的**: 为了让检索更精确,系统需要结合上下文来理解用户的真实意图。
- 操作:
 - a. 系统检索了当前会话最近的20条历史消息(实际检索到8条)作为上下文。
 - b. 调用了一个名为 deepseek-r1:7b 的本地大语言模型。
 - c. 模型根据聊天历史分析出提问者是"Liwx",并将原问题"入住的房型是什么"改写得更具体。
- 结果: 问题被成功改写为: "Liwx本次入住的房型是什么"。

事件 2: preprocess_query – 问题预处理

- 目的: 将改写后的问题进行分词, 转换为适合搜索引擎处理的关键词序列。
- 操作: 对改写后的问题进行了分词处理。
- 结果: 生成了一串关键词: "需要改写用户问题入住房型根据提供信息入住人 Liwx 选择房型 双床房 因此改写后 完整问题为 Liwx 本次入住房型"。

事件 3: chunk search - 知识区块检索

这是最核心的**检索(Retrieval)**步骤,系统执行了两次混合搜索(Hybrid Search)。

- 第一次搜索 (使用改写后的完整问句):
 - 向量检索:
 - i. 加载嵌入模型 bge-m3: latest 将问句转换为一个1024维的向量。
 - ii. 在PostgreSQL数据库中进行向量相似度搜索,找到了2个相关的知识区块(chunk),ID 分别为 e3bf6599-... 和 3989c6ce-... 。
 - 关键词检索:
 - i. 同时,系统也进行了关键词搜索。
 - ii. 同样找到了上述2个知识区块。
 - **结果合并**: 两种方法找到的4个结果(实际是2个重复的)被去重,最终得到2个唯一的知识区块。
- 第二次搜索 (使用预处理后的关键词序列):
 - 系统使用分词后的关键词重复了上述的**向量检索和关键词检索**过程。
 - 最终也得到了相同的2个知识区块。
- **最终结果**: 经过两次搜索和结果合并,系统锁定了2个最相关的知识区块,并将它们的内容提取出来,准备用于生成答案。

事件 4: chunk rerank - 结果重排序

- **目的**: 使用一个更强大的模型对初步检索出的结果进行更精细的排序,以提高最终答案的质量。
- 操作: 日志显示 Rerank model ID is empty, skipping reranking 。这意味着系统配置 了重排序步骤,但没有指定具体的重排序模型,因此**跳过了此步骤**。

事件 5: chunk_merge - 区块合并

- 目的: 将内容上相邻或相关的知识区块进行合并,形成更完整的上下文。
- 操作: 系统分析了检索到的2个区块,并尝试进行合并。根据日志,最终处理后仍然是2个独立的区块,但已按相关性分数排好序。

事件 6: filter_top_k - Top-K 过滤

- **目的**: 仅保留最相关的K个结果,防止过多无关信息干扰语言模型。
- 操作: 系统配置保留前5个(Top-K = 5)最相关的区块。由于当前只有2个区块,它们全部通过了此过滤器。

事件 7 & 8: into_chat_message & chat_completion_stream - 生成回答

这是**生成(Generation)**步骤。

• 目的: 基于检索到的信息, 生成自然流畅的回答。

• 操作:

- a. 系统将检索到的2个知识区块的内容、用户的原始问题以及聊天历史整合在一起,形成一个完整的提示(Prompt)。
- b. 再次调用 deepseek-r1:7b 大语言模型,并以**流式(Stream)**的方式请求生成答案。流式输出可以实现打字机效果,提升用户体验。

事件 9: stream_filter - 流式输出过滤

• 目的: 对模型生成的实时文本流进行后处理, 过滤掉不需要的特殊标记或内容。

• 操作:

- 系统设置了一个过滤器,用于移除模型在思考过程中可能产生的内部标记,如 <think> 和 </think> 。
- 日志显示,模型输出的第一个词块是 <think> 根据 ,过滤器成功拦截并移除了 <think> 标记,只将"根据"及之后的内容传递下去。

4. 完成与响应

- **发送引用**: 在生成答案的同时,系统将作为依据的2个知识区块作为"参考内容"发送给前端,以便用户查证来源。
- **更新消息**: 当模型生成完所有内容后,系统将完整的回答更新到之前创建的消息记录(ID: **6f0576** 49-**...**)中。
- 请求结束: 服务器返回 200 成功状态码,标志着本次从提问到回答的完整流程结束。

总结

这个日志完整地记录了一次典型的RAG流程:系统通过**问题改写**和**预处理**来精确理解用户意图,接着利用**向量与关键词混合检索**从知识库中找到相关信息,虽然跳过了**重排序**,但依然执行了**合并**与**过滤**,最后将检索到的知识作为上下文,交由大语言模型**生成**流畅、准确的回答,并通过**流式过滤**保证了输出的纯净性。

文档解析切分

代码实现了一个独立的、通过gRPC通信的微服务,专门负责文档内容的深度解析、分块和多模态信息提取。它正是上一份日志分析中提到的"异步处理"阶段的核心执行者。

整体架构

这是一个基于Python的gRPC服务,其核心职责是接收文件(或URL),并将其解析成结构化的、可供后续处理(如向量化)的文本块(Chunks)。

- server py: 服务的入口和网络层。它负责启动一个多进程、多线程的gRPC服务器,接收来自 Go后端的请求、并将解析结果返回。
- parser.py:设计模式中的**外观(Facade)模式**。它提供了一个统一的 Parser 类,屏蔽了内部多种具体解析器(如PDF、DOCX、Markdown等)的复杂性。外部调用者(server.py)只需与这个 Parser 类交互。
- base_parser.py:解析器的基类,定义了所有具体解析器共享的核心逻辑和抽象方法。这是整个解析流程的"大脑",包含了最复杂的文本分块、图片处理、OCR和图像描述生成等功能。

详细工作流程

当Go后端启动异步任务时,它会携带文件内容和配置信息,向这个Python服务发起一次gRPC调用。以下是完整的处理流程:

第一步:请求接收与分发(server.py & parser.py)

- 1. gRPC服务入口 (server.py: serve):
 - 服务通过 serve() 函数启动。它会根据环境变量(GRPC_WORKER_PROCESSES , GRPC_M AX_WORKERS) 启动一个多进程、多线程的服务器,以充分利用CPU资源,提高并发处理能力。
 - 每个工作进程都监听在指定的端口(如50051),准备接收请求。
- 2. 请求处理 (server.py: ReadFromFile):
 - 当Go后端发起 ReadFromFile 请求时,其中一个工作进程会接收到该请求。
 - 该方法首先会解析请求中的参数,包括:
 - file_name , file_type , file_content : 文件的基本信息和二进制内容。
 - read_config: 一个包含所有解析配置的复杂对象,如 chunk_size (分块大小)、 chunk overlap (重叠大小)、 enable multimodal (是否启用多模态处

- 理)、 storage_config (对象存储配置)、 vlm_config (视觉语言模型配置) 等。
- 它将这些配置整合成一个 ChunkingConfig 数据对象。
- 最关键的一步是调用 self.parser.parse_file(...) ,将解析任务交给 Parser 外观 类处理。
- 3. 解析器选择(parser.py: Parser.parse_file):
 - Parser 类接收到任务后,首先调用 get_parser(file_type) 方法。
 - 该方法会根据文件类型(例如 'pdf') 在一个字典 self.parsers 中查找对应的具体解析器类(例如 PDFParser)。
 - 找到后,它会**实例化**这个 PDFParser 类,并将 ChunkingConfig 等所有配置信息传递给 构造函数。

第二步:核心解析与分块(base_parser.py)

这是一个非常好的问题,它触及了整个流程的核心:如何保证信息的上下文完整性和原始顺序。

是的,根据您提供的 base_parser.py 代码,最终切分出的 Chunk 中的文本、表格和图像是按照它们在原始文档中的出现顺序来保存的。

这个顺序得以保证,主要归功于 BaseParser 中几个设计精巧的方法相互协作。我们来详细追踪一下 这个流程。

整个顺序的保证可以分为三个阶段:

- 1. 阶段一: 统一的文本流创建 (pdf_parser.py):
 - 在 parse_into_text 方法中,您的代码会**逐页**处理PDF。
 - 在每一页内部,它会按照一定的逻辑(先提取非表格文本,再附加表格,最后附加图像占位符)将所有内容**拼接成一个长字符串**(page_content_parts)。
 - 关键点: 虽然在这个阶段,文本、表格和图像占位符的拼接顺序可能不是100%精确到字符级别,但它保证了同一页的内容会在一起,并且大致遵循了从上到下的阅读顺序。
 - 最后,所有页面的内容被 "\n\n--- Page Break ---\n\n" 连接起来,形成一个包含了 所有信息(文本、Markdown表格、图像占位符)的、单一的、有序的文本流 (final_text)。
- 2. 阶段二: 原子化与保护(split into units):
 - 这个单一的 final_text 被传递给 _split_into_units 方法。
 - 这个方法是**保证结构完整性的关键**。它使用正则表达式,将**整个Markdown表格**和**整个** Markdown**图像占位符**识别为**不可分割的原子单元** (atomic units)。
 - 它会将这些原子单元(表格、图片)和它们之间的普通文本块、按照它们在「final text」中

出现的**原始顺序**,切分成一个列表(units)。

- **结果**: 我们现在有了一个列表,例如 ['一些文本', '!...', '另一些文本', '|...|\n|---|\n...', '更多文本'] 。这个列表中的元素顺序**完全等同于它们在原始文档中的顺序**。
- 3. 阶段三: 顺序分块 (chunk text):
 - chunk text 方法接收到这个有序的 units 列表。
 - 它的工作机制非常简单直接: 它会**按顺序**遍历这个列表中的每一个单元 (unit) 。
 - 它将这些单元**依次添加**到一个临时的 current_chunk 列表中,直到这个块的长度接近 chunk size 的上限。
 - 当一个块满了之后,它就被保存下来,然后开始一个新的块(可能会带有上一个块的重叠部分)。
 - **关键点**: 因为 **chunk_text 严格按照 units 列表的顺序进行处理**,所以它永远不会打乱 表格、文本和图像之间的相对顺序。一个在文档中先出现的表格,也必然会出现在一个序号更 靠前的 Chunk 中。
- 4. 阶段四: 图像信息附加 (process_chunks_images):
 - 在文本块被切分好之后, process chunks images 方法会被调用。
 - 它会处理**每一个**已经生成好的 Chunk。
 - 在每个 Chunk 内部、它会找到图像占位符、然后进行AI处理。
 - 最后,它会将处理好的图像信息(包含永久URL、OCR文本、图像描述等)附加到**该 Chunk 自** 己的 images 属性中。
 - **关键点**: 这个过程**不会改变 Chunk 的顺序或其 content 的内容**。它只是为已经存在的、顺序正确的 Chunk 附加额外的信息。

第三步: 多模态处理(如果启用)(base_parser.py)

如果 enable multimodal 为 True , 在文本分块完成后, 会进入最复杂的多模态处理阶段。

- 1. 并发任务启动 (BaseParser.process chunks images):
 - 该方法使用 asyncio (Python的异步I/O框架)来**并发处理所有文本块中的图片**,以极大地 提升效率。
 - 它为每个 Chunk 创建一个异步任务 process chunk images async 。
- 2. 处理单个块中的图片(BaseParser.process_chunk_images_async):
 - **提取图片引用**: 首先,使用正则表达式 extract_images_from_chunk 从当前块的文本中 找到所有的图片引用(例如, ![alt text](image.png))。
 - **图片持久化**: 对于找到的每个图片,并发地调用 download and upload image 。这个函

数负责:

- 从其原始位置(可能是PDF内部、本地路径或远程URL)获取图片数据。
- 将图片**上传到配置好的对象存储(COS/MinIO)**。这一步至关重要,它将临时的、不稳定的图片引用转换成一个持久化、可通过URL公开访问的地址。
- 返回持久化的URL和图片对象(PIL Image)。
- **并发AI处理**: 将所有成功上传的图片收集起来,调用 process_multiple_images 。
 - 该方法内部使用 asyncio.Semaphore 来限制并发数量(例如最多同时处理5张图片),防止瞬间消耗过多内存或触发模型API的速率限制。
 - 对于每张图片,它会调用 process_image_async 。
- 3. 处理单张图片(BaseParser.process_image_async):
 - OCR: 调用 perform_ocr ,它会使用一个OCR引擎(如 Paddle0CR)来识别图片中的所有文字。
 - **图像描述 (Caption)**: 调用 get_image_caption ,它会将图片数据(转为Base64)发送给配置的视觉语言模型(VLM),生成对图片内容的自然语言描述。
 - 该方法返回 (ocr_text, caption, 持久化URL)。

4. 结果聚合:

○ 所有图片处理完成后,包含持久化URL、OCR文本和图像描述的结构化信息,会被附加到对应 Chunk 对象的 images 字段上。

第四步:返回结果(server.py)

- 1. 数据转换(server.py: _convert_chunk_to_proto):
 - 当 parser.parse_file 执行完毕后,它返回一个包含所有处理过的 Chunk 对象的列表 (ParseResult) 。
 - ReadFromFile 方法接收到这个结果,并调用 _convert_chunk_to_proto ,将Python的 Chunk 对象(包括其内部的图片信息)转换成gRPC定义的Protobuf消息格式。

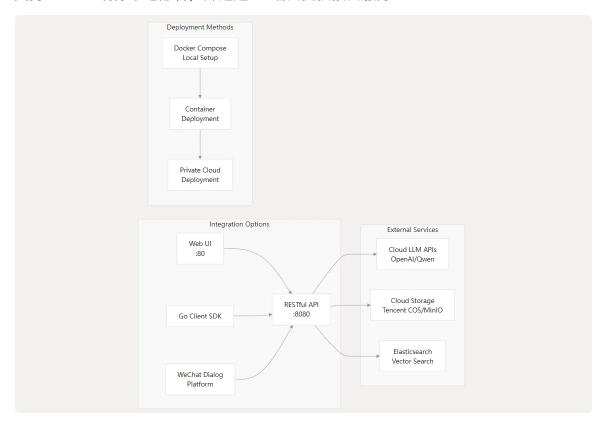
2. 响应返回:

○ 最后,gRPC服务器将这个包含所有分块和多模态信息的 ReadResponse 消息发送回给调用 方——Go后端服务。

至此,Go后端就拿到了结构化、信息丰富的文档数据,可以进行下一步的向量化和索引存储了。

部署

支持Docker 镜像本地部署,并通过API端口提供接口服务



性能和监控

Weknora包含丰富的监控和测试组件:

- 分布式跟踪:集成Jaeger用于跟踪请求在服务架构中的完整执行路。本质上,Jaeger是一种帮助用户"看见"请求在分布式系统中完整生命周期的技术。
- 健康监控: 监控服务处在健康状态
- 可扩展性: 通过容器化部署, 可通过多个服务满足大规模并发请求

QA

问题1: 在检索过程的执行了两次混合搜索的目的是什么? 以及第一次和第二次搜索有什么不同?

这是一个非常好的观察。系统执行两次混合搜索是为了最大化检索的准确性和召回率,本质上是一种查询扩展(Query Expansion)和多策略检索的组合方法。

目的

通过两种不同形式的查询(原始改写句 vs. 分词后的关键词序列)去搜索,系统可以结合两种查询方式的优点:

- **语义检索的深度**: 使用完整的句子进行搜索,能更好地利用向量模型(如 **bge-m3**)对句子整体含义的理解能力,找到语义上最接近的知识区块。
- 关键词检索的广度:使用分词后的关键词进行搜索,能确保即使知识区块的表述方式与原问题不同,但只要包含了核心关键词,就有机会被命中。这对于传统的关键词匹配算法(如BM25)尤其有效。

简单来说,就是**用两种不同的"问法"去问同一个问题**,然后将两边的结果汇总起来,确保最相关的知识不会被遗漏。

两次搜索的不同点

它们最核心的不同在于输入的查询文本 (Query Text):

1. 第一次混合搜索

- 输入: 使用的是经过 rewrite_query 事件后生成的、语法完整的自然语言问句。
- 日志证据:
- INFO [2025-08-29 09:46:36.896] [request_id=Lkq00GLYu2fV] knowledgebase.go:2 66[HybridSearch] | Hybrid search parameters, knowledge base ID: kb-0000000 1, query text: 需要改写的用户问题是: "入住的房型是什么"。根据提供的信息,入住人Liwx选择的房型是双床房。因此,改写后的完整问题为: "Liwx本次入住的房型是什么"

2. 第二次混合搜索

- 输入: 使用的是经过 preprocess_query 事件处理后生成的、由空格隔开的关键词序列。
- 日志证据:
- INFO [2025-08-29 09:46:37.257] [request_id=Lkq00GLYu2fV] knowledgebase.go:2 66[HybridSearch] | Hybrid search parameters, knowledge base ID: kb-0000000 1, query text: 需要 改写 用户 问题 入住 房型 根据 提供 信息 入住 人 Liwx 选择 房型 双床 房 因此 改写 后 完整 问题 为 Liwx 本次 入住 房型

最终,系统将这两次搜索的结果进行去重和合并(日志中显示每次都找到2个结果,去重后总共还是2 个),从而得到一个更可靠的知识集合,用于后续的答案生成。

问题2: 重排序模型分析

当然,这三种Reranker(重排器)是目前RAG领域中非常先进的技术,它们在工作原理和适用场景上有着显著的区别。

简单来说,它们代表了从"**专门的判别模型**"到"**利用大语言模型(LLM)进行判别**"再到"**深度挖掘LLM内 部信息进行判别**"的演进。

以下是它们的详细区别:

1. Normal Reranker (常规重排器 / 交叉编码器)

这是最经典也是最主流的重排方法。

• 模型类型: 序列分类模型 (Sequence Classification Model)。本质上是一个交叉编码器 (Cross-Encoder),通常基于BERT、RoBERTa等双向编码器架构。 BAAI/bge-reranker-base/large/v2-m3 都属于这一类。

• 工作原理:

- a. 它将**查询(Query)和待排序的文档(Passage)**拼接成一个单一的输入序列,例如: [C LS] what is panda? [SEP] The giant panda is a bear species endemic to China. [SEP] 。
- b. 这个拼接后的序列被完整地送入模型中。模型内部的自注意力机制(Self-Attention)可以同时 分析查询和文档中的每一个词,并计算它们之间**细粒度的交互关系**。
- c. 模型最终输出一个**单一的分数(Logit)**,这个分数直接代表了查询和文档的相关性。分数越高,相关性越强。

• 关键特性:

- **优点**: 由于查询和文档在模型内部进行了充分的、深度的交互,其**准确度通常非常高**,是衡量 Reranker性能的黄金标准。
- 缺点: 速度较慢。因为它必须为每一个"查询-文档"对都独立执行一次完整的、代价高昂的计算。如果初步检索返回了100个文档,它就需要运行100次。

2. LLM-based Reranker (基于LLM的重排器)

这种方法创造性地利用了通用大语言模型(LLM)的能力来进行重排。

• 模型类型: 因果语言模型 (Causal Language Model), 即我们常说的GPT、Llama、Gemma这类用

于生成文本的LLM。 BAAI/bge-reranker-v2-gemma 就是一个典型的例子。

• 工作原理:

- a. 它**不是直接输出一个分数**,而是将重排任务**转化为一个问答或文本生成任务**。
- b. 它通过一个精心设计的**提示(Prompt)**来组织输入,例如: "Given a query A and a passage B, determine whether the passage contains an answer to the query by providing a prediction of either 'Yes' or 'No'. A: {query} B: {passage}"。
- c. 它将这个完整的Prompt喂给LLM,然后观察LLM在最后生成"Yes"这个词的概率。
- d. 这个**生成"Yes"的概率(或其Logit值)就被当作是相关性分数**。如果模型非常确信答案是"Yes",说明它认为文档B包含了查询A的答案,即相关性高。

• 关键特性:

- **优点**: 能够利用LLM强大的**语义理解、推理和世界知识**,对于需要深度理解和推理才能判断相关性的复杂查询,效果可能更好。
- 缺点: 计算开销可能非常大(取决于LLM的大小),并且性能**高度依赖于Prompt的设计**。

3. LLM-based Layerwise Reranker (基于LLM分层信息的重排器)

这是第二种方法的"威力加强版",是一种更前沿、更复杂的探究性技术。

● 模型类型: 同样是**因果语言模型 (Causal Language Model)**,例如 BAAI/bge-reranker-v2-mi nicpm-layerwise 。

• 工作原理:

- a. 输入部分与第二种方法完全相同,也是使用"Yes/No"的Prompt。
- b. 核心区别在于**分数的提取方式**。它不再仅仅依赖LLM**最后一层**的输出(即最终的预测结果)。
- c. 它认为LLM在逐层处理信息的过程中,不同深度的网络层(Layer)可能捕获了不同层次的语义相关性信息。因此,它会从**模型的多个中间层**提取出关于"Yes"这个词的预测Logit。
- d. 代码中的 cutoff_layers=[28] 参数就是告诉模型:"请把第28层的输出给我"。最终,你会得到一个或多个来自不同网络层的分数,这些分数可以被平均或以其他方式组合,形成一个更鲁棒的最终相关性判断。

• 关键特性:

- **优点**: 理论上可以获得**更丰富、更全面的相关性信号**,可能达到比只看最后一层更高的精度,是目前探索性能极限的一种方法。
- **缺点**: **复杂度最高**,需要对模型进行特定的修改才能提取中间层信息(代码中的 trust_remot e_code=True 就是一个信号),计算开销也很大。

总结对比

特性	1. Normal Reranker (常规)	2. LLM-based Reranker (基于LLM)	3. LLM-based Layerwise Reranker (基于LLM分层)
底层模型	交叉编码器 (如BERT)	因果语言模型 (如 Gemma)	因果语言模型 (如 MiniCPM)
工作原理	计算Query和Passage 的深度交互,直接输出 相关分	将排序任务转 为"Yes/No"预测, 用"Yes"的概率作为分 数	与2类似,但从LLM的 多个中间层提 取"Yes"的概率
输出	单一的相关性分数	单一的相关性分数(来 自最后一层)	多个相关性分数(来自 不同层)
优点	速度与精度的最佳平衡 点,成熟稳定	利用LLM的推理能力, 处理复杂问题	理论上精度最高,信号 更丰富
缺点	相比向量检索慢	计算开销大,依赖 Prompt设计	复杂度最高 ,计算开销 最大
推荐场景	大多数生产环境的首 选,效果好,易于部署	对答案质量有极致要 求,且计算资源充足的 场景	学术研究或追求SOTA (State-of-the-art) 性能的场景

使用建议

- 1. **开始阶段**: 强烈建议您**从** Normal Reranker **开始**,例如 BAAI/bge-reranker-v2-m3 。它 是目前综合表现最好的模型之一,能显著提升您的RAG系统性能,并且相对容易集成和部署。
- 2. **进阶探索**: 如果您发现常规Reranker在处理某些非常微妙或需要复杂推理的查询时表现不佳,并且您拥有充足的GPU资源,可以尝试 LLM-based Reranker 。
- 3. **前沿研究**: Layerwise Reranker 更适合研究人员或希望在特定任务上压榨出最后一点性能的专家。

在您的系统中,启用重排服务时,您只需要在配置中指定所选的模型ID,并确保您的环境(例如Ollama或类似服务)已经正确加载并运行了该模型。

问题3: 粗过滤或细过滤后的知识(带重排)如何组装发送给大模型的?

这一块主要是设计提示词,典型的指令细节,其核心任务是根据上下文回答用户问题。组装上下文时需 要指定

关键约束: 必须严格按照所提供文档回答, 禁止使用你自己的知识回答

未知情况处理: 如果文档中没有足够的信息来回答问题,请告知"根据所掌握的资料,无法回答这个问题"

引用要求: 在回答时, 如果引用了某个文档内容, 请在句子末尾加上文档编号