Files
index-tts/webui.py
Arcitec 05a8ae45e5 fix: Don't load DeepSpeed if use_deepspeed is False
- A recent change made DeepSpeed optional (off by default), but the code was still trying to load DeepSpeed even when `use_deepspeed = False`. This means users would still have a big startup slowdown and a lot of error messages if their DeepSpeed module isn't working (usually because it's not able to compile itself on their machines).

- We now only load DeepSpeed if the user requested it.

- Translated the DeepSpeed error message to English, since all other errors in the same function were already English.
2025-09-09 18:20:28 +02:00

351 lines
16 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import json
import os
import sys
import threading
import time
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
import pandas as pd
current_dir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(current_dir)
sys.path.append(os.path.join(current_dir, "indextts"))
import argparse
parser = argparse.ArgumentParser(
description="IndexTTS WebUI",
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument("--verbose", action="store_true", default=False, help="Enable verbose mode")
parser.add_argument("--port", type=int, default=7860, help="Port to run the web UI on")
parser.add_argument("--host", type=str, default="0.0.0.0", help="Host to run the web UI on")
parser.add_argument("--model_dir", type=str, default="./checkpoints", help="Model checkpoints directory")
parser.add_argument("--fp16", action="store_true", default=False, help="Use FP16 for inference if available")
parser.add_argument("--use_deepspeed", action="store_true", default=False, help="Use DeepSpeed to accelerate if available")
parser.add_argument("--cuda_kernel", action="store_true", default=False, help="Use CUDA kernel for inference if available")
parser.add_argument("--gui_seg_tokens", type=int, default=120, help="GUI: Max tokens per generation segment")
cmd_args = parser.parse_args()
if not os.path.exists(cmd_args.model_dir):
print(f"Model directory {cmd_args.model_dir} does not exist. Please download the model first.")
sys.exit(1)
for file in [
"bpe.model",
"gpt.pth",
"config.yaml",
"s2mel.pth",
"wav2vec2bert_stats.pt"
]:
file_path = os.path.join(cmd_args.model_dir, file)
if not os.path.exists(file_path):
print(f"Required file {file_path} does not exist. Please download it.")
sys.exit(1)
import gradio as gr
from indextts.infer_v2 import IndexTTS2
from tools.i18n.i18n import I18nAuto
i18n = I18nAuto(language="Auto")
MODE = 'local'
tts = IndexTTS2(model_dir=cmd_args.model_dir,
cfg_path=os.path.join(cmd_args.model_dir, "config.yaml"),
use_fp16=cmd_args.fp16,
use_deepspeed=cmd_args.use_deepspeed,
use_cuda_kernel=cmd_args.cuda_kernel,
)
# 支持的语言列表
LANGUAGES = {
"中文": "zh_CN",
"English": "en_US"
}
EMO_CHOICES = [i18n("与音色参考音频相同"),
i18n("使用情感参考音频"),
i18n("使用情感向量控制"),
i18n("使用情感描述文本控制")]
os.makedirs("outputs/tasks",exist_ok=True)
os.makedirs("prompts",exist_ok=True)
MAX_LENGTH_TO_USE_SPEED = 70
with open("examples/cases.jsonl", "r", encoding="utf-8") as f:
example_cases = []
for line in f:
line = line.strip()
if not line:
continue
example = json.loads(line)
if example.get("emo_audio",None):
emo_audio_path = os.path.join("examples",example["emo_audio"])
else:
emo_audio_path = None
example_cases.append([os.path.join("examples", example.get("prompt_audio", "sample_prompt.wav")),
EMO_CHOICES[example.get("emo_mode",0)],
example.get("text"),
emo_audio_path,
example.get("emo_weight",1.0),
example.get("emo_text",""),
example.get("emo_vec_1",0),
example.get("emo_vec_2",0),
example.get("emo_vec_3",0),
example.get("emo_vec_4",0),
example.get("emo_vec_5",0),
example.get("emo_vec_6",0),
example.get("emo_vec_7",0),
example.get("emo_vec_8",0)]
)
def gen_single(emo_control_method,prompt, text,
emo_ref_path, emo_weight,
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
emo_text,emo_random,
max_text_tokens_per_segment=120,
*args, progress=gr.Progress()):
output_path = None
if not output_path:
output_path = os.path.join("outputs", f"spk_{int(time.time())}.wav")
# set gradio progress
tts.gr_progress = progress
do_sample, top_p, top_k, temperature, \
length_penalty, num_beams, repetition_penalty, max_mel_tokens = args
kwargs = {
"do_sample": bool(do_sample),
"top_p": float(top_p),
"top_k": int(top_k) if int(top_k) > 0 else None,
"temperature": float(temperature),
"length_penalty": float(length_penalty),
"num_beams": num_beams,
"repetition_penalty": float(repetition_penalty),
"max_mel_tokens": int(max_mel_tokens),
# "typical_sampling": bool(typical_sampling),
# "typical_mass": float(typical_mass),
}
if type(emo_control_method) is not int:
emo_control_method = emo_control_method.value
if emo_control_method == 0:
emo_ref_path = None
emo_weight = 1.0
if emo_control_method == 1:
emo_weight = emo_weight
if emo_control_method == 2:
vec = [vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8]
vec_sum = sum([vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8])
if vec_sum > 1.5:
gr.Warning(i18n("情感向量之和不能超过1.5,请调整后重试。"))
return
else:
vec = None
if emo_text == "":
# erase empty emotion descriptions; `infer()` will then automatically use the main prompt
emo_text = None
print(f"Emo control mode:{emo_control_method},vec:{vec}")
output = tts.infer(spk_audio_prompt=prompt, text=text,
output_path=output_path,
emo_audio_prompt=emo_ref_path, emo_alpha=emo_weight,
emo_vector=vec,
use_emo_text=(emo_control_method==3), emo_text=emo_text,use_random=emo_random,
verbose=cmd_args.verbose,
max_text_tokens_per_segment=int(max_text_tokens_per_segment),
**kwargs)
return gr.update(value=output,visible=True)
def update_prompt_audio():
update_button = gr.update(interactive=True)
return update_button
with gr.Blocks(title="IndexTTS Demo") as demo:
mutex = threading.Lock()
gr.HTML('''
<h2><center>IndexTTS2: A Breakthrough in Emotionally Expressive and Duration-Controlled Auto-Regressive Zero-Shot Text-to-Speech</h2>
<p align="center">
<a href='https://arxiv.org/abs/2506.21619'><img src='https://img.shields.io/badge/ArXiv-2506.21619-red'></a>
</p>
''')
with gr.Tab(i18n("音频生成")):
with gr.Row():
os.makedirs("prompts",exist_ok=True)
prompt_audio = gr.Audio(label=i18n("音色参考音频"),key="prompt_audio",
sources=["upload","microphone"],type="filepath")
prompt_list = os.listdir("prompts")
default = ''
if prompt_list:
default = prompt_list[0]
with gr.Column():
input_text_single = gr.TextArea(label=i18n("文本"),key="input_text_single", placeholder=i18n("请输入目标文本"), info=f"{i18n('当前模型版本')}{tts.model_version or '1.0'}")
gen_button = gr.Button(i18n("生成语音"), key="gen_button",interactive=True)
output_audio = gr.Audio(label=i18n("生成结果"), visible=True,key="output_audio")
with gr.Accordion(i18n("功能设置")):
# 情感控制选项部分
with gr.Row():
emo_control_method = gr.Radio(
choices=EMO_CHOICES,
type="index",
value=EMO_CHOICES[0],label=i18n("情感控制方式"))
# 情感参考音频部分
with gr.Group(visible=False) as emotion_reference_group:
with gr.Row():
emo_upload = gr.Audio(label=i18n("上传情感参考音频"), type="filepath")
with gr.Row():
emo_weight = gr.Slider(label=i18n("情感权重"), minimum=0.0, maximum=1.6, value=0.8, step=0.01)
# 情感随机采样
with gr.Row():
emo_random = gr.Checkbox(label=i18n("情感随机采样"),value=False,visible=False)
# 情感向量控制部分
with gr.Group(visible=False) as emotion_vector_group:
with gr.Row():
with gr.Column():
vec1 = gr.Slider(label=i18n(""), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec2 = gr.Slider(label=i18n(""), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec3 = gr.Slider(label=i18n(""), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec4 = gr.Slider(label=i18n(""), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
with gr.Column():
vec5 = gr.Slider(label=i18n("厌恶"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec6 = gr.Slider(label=i18n("低落"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec7 = gr.Slider(label=i18n("惊喜"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
vec8 = gr.Slider(label=i18n("平静"), minimum=0.0, maximum=1.4, value=0.0, step=0.05)
with gr.Group(visible=False) as emo_text_group:
with gr.Row():
emo_text = gr.Textbox(label=i18n("情感描述文本"), placeholder=i18n("请输入情绪描述(或留空以自动使用目标文本作为情绪描述)"), value="", info=i18n("例如:高兴,愤怒,悲伤等"))
with gr.Accordion(i18n("高级生成参数设置"), open=False):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(f"**{i18n('GPT2 采样设置')}** _{i18n('参数会影响音频多样性和生成速度详见')} [Generation strategies](https://huggingface.co/docs/transformers/main/en/generation_strategies)._")
with gr.Row():
do_sample = gr.Checkbox(label="do_sample", value=True, info=i18n("是否进行采样"))
temperature = gr.Slider(label="temperature", minimum=0.1, maximum=2.0, value=0.8, step=0.1)
with gr.Row():
top_p = gr.Slider(label="top_p", minimum=0.0, maximum=1.0, value=0.8, step=0.01)
top_k = gr.Slider(label="top_k", minimum=0, maximum=100, value=30, step=1)
num_beams = gr.Slider(label="num_beams", value=3, minimum=1, maximum=10, step=1)
with gr.Row():
repetition_penalty = gr.Number(label="repetition_penalty", precision=None, value=10.0, minimum=0.1, maximum=20.0, step=0.1)
length_penalty = gr.Number(label="length_penalty", precision=None, value=0.0, minimum=-2.0, maximum=2.0, step=0.1)
max_mel_tokens = gr.Slider(label="max_mel_tokens", value=1500, minimum=50, maximum=tts.cfg.gpt.max_mel_tokens, step=10, info=i18n("生成Token最大数量过小导致音频被截断"), key="max_mel_tokens")
# with gr.Row():
# typical_sampling = gr.Checkbox(label="typical_sampling", value=False, info="不建议使用")
# typical_mass = gr.Slider(label="typical_mass", value=0.9, minimum=0.0, maximum=1.0, step=0.1)
with gr.Column(scale=2):
gr.Markdown(f'**{i18n("分句设置")}** _{i18n("参数会影响音频质量和生成速度")}_')
with gr.Row():
initial_value = max(20, min(tts.cfg.gpt.max_text_tokens, cmd_args.gui_seg_tokens))
max_text_tokens_per_segment = gr.Slider(
label=i18n("分句最大Token数"), value=initial_value, minimum=20, maximum=tts.cfg.gpt.max_text_tokens, step=2, key="max_text_tokens_per_segment",
info=i18n("建议80~200之间值越大分句越长值越小分句越碎过小过大都可能导致音频质量不高"),
)
with gr.Accordion(i18n("预览分句结果"), open=True) as segments_settings:
segments_preview = gr.Dataframe(
headers=[i18n("序号"), i18n("分句内容"), i18n("Token数")],
key="segments_preview",
wrap=True,
)
advanced_params = [
do_sample, top_p, top_k, temperature,
length_penalty, num_beams, repetition_penalty, max_mel_tokens,
# typical_sampling, typical_mass,
]
if len(example_cases) > 0:
gr.Examples(
examples=example_cases,
examples_per_page=20,
inputs=[prompt_audio,
emo_control_method,
input_text_single,
emo_upload,
emo_weight,
emo_text,
vec1,vec2,vec3,vec4,vec5,vec6,vec7,vec8]
)
def on_input_text_change(text, max_text_tokens_per_segment):
if text and len(text) > 0:
text_tokens_list = tts.tokenizer.tokenize(text)
segments = tts.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment=int(max_text_tokens_per_segment))
data = []
for i, s in enumerate(segments):
segment_str = ''.join(s)
tokens_count = len(s)
data.append([i, segment_str, tokens_count])
return {
segments_preview: gr.update(value=data, visible=True, type="array"),
}
else:
df = pd.DataFrame([], columns=[i18n("序号"), i18n("分句内容"), i18n("Token数")])
return {
segments_preview: gr.update(value=df),
}
def on_method_select(emo_control_method):
if emo_control_method == 1:
return (gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
elif emo_control_method == 2:
return (gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=True),
gr.update(visible=False)
)
elif emo_control_method == 3:
return (gr.update(visible=False),
gr.update(visible=True),
gr.update(visible=False),
gr.update(visible=True)
)
else:
return (gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False),
gr.update(visible=False)
)
emo_control_method.select(on_method_select,
inputs=[emo_control_method],
outputs=[emotion_reference_group,
emo_random,
emotion_vector_group,
emo_text_group]
)
input_text_single.change(
on_input_text_change,
inputs=[input_text_single, max_text_tokens_per_segment],
outputs=[segments_preview]
)
max_text_tokens_per_segment.change(
on_input_text_change,
inputs=[input_text_single, max_text_tokens_per_segment],
outputs=[segments_preview]
)
prompt_audio.upload(update_prompt_audio,
inputs=[],
outputs=[gen_button])
gen_button.click(gen_single,
inputs=[emo_control_method,prompt_audio, input_text_single, emo_upload, emo_weight,
vec1, vec2, vec3, vec4, vec5, vec6, vec7, vec8,
emo_text,emo_random,
max_text_tokens_per_segment,
*advanced_params,
],
outputs=[output_audio])
if __name__ == "__main__":
demo.queue(20)
demo.launch(server_name=cmd_args.host, server_port=cmd_args.port)