Files
index-tts/indextts/infer_v2.py

740 lines
34 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import os
from subprocess import CalledProcessError
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
import json
import re
import time
import librosa
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from omegaconf import OmegaConf
from indextts.gpt.model_v2 import UnifiedVoice
from indextts.utils.maskgct_utils import build_semantic_model, build_semantic_codec
from indextts.utils.checkpoint import load_checkpoint
from indextts.utils.front import TextNormalizer, TextTokenizer
from indextts.s2mel.modules.commons import load_checkpoint2, MyModel
from indextts.s2mel.modules.bigvgan import bigvgan
from indextts.s2mel.modules.campplus.DTDNN import CAMPPlus
from indextts.s2mel.modules.audio import mel_spectrogram
from transformers import AutoTokenizer
from modelscope import AutoModelForCausalLM
from huggingface_hub import hf_hub_download
import safetensors
from transformers import SeamlessM4TFeatureExtractor
import random
import torch.nn.functional as F
class IndexTTS2:
def __init__(
self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_fp16=False, device=None,
use_cuda_kernel=None,use_deepspeed=False
):
"""
Args:
cfg_path (str): path to the config file.
model_dir (str): path to the model directory.
use_fp16 (bool): whether to use fp16.
device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
use_deepspeed (bool): whether to use DeepSpeed or not.
"""
if device is not None:
self.device = device
self.use_fp16 = False if device == "cpu" else use_fp16
self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
elif torch.cuda.is_available():
self.device = "cuda:0"
self.use_fp16 = use_fp16
self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
elif hasattr(torch, "xpu") and torch.xpu.is_available():
self.device = "xpu"
self.use_fp16 = use_fp16
self.use_cuda_kernel = False
elif hasattr(torch, "mps") and torch.backends.mps.is_available():
self.device = "mps"
self.use_fp16 = False # Use float16 on MPS is overhead than float32
self.use_cuda_kernel = False
else:
self.device = "cpu"
self.use_fp16 = False
self.use_cuda_kernel = False
print(">> Be patient, it may take a while to run in CPU mode.")
self.cfg = OmegaConf.load(cfg_path)
self.model_dir = model_dir
self.dtype = torch.float16 if self.use_fp16 else None
self.stop_mel_token = self.cfg.gpt.stop_mel_token
self.qwen_emo = QwenEmotion(os.path.join(self.model_dir, self.cfg.qwen_emo_path))
self.gpt = UnifiedVoice(**self.cfg.gpt)
self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
load_checkpoint(self.gpt, self.gpt_path)
self.gpt = self.gpt.to(self.device)
if self.use_fp16:
self.gpt.eval().half()
else:
self.gpt.eval()
print(">> GPT weights restored from:", self.gpt_path)
if use_deepspeed:
try:
import deepspeed
except (ImportError, OSError, CalledProcessError) as e:
use_deepspeed = False
print(f">> Failed to load DeepSpeed. Falling back to normal inference. Error: {e}")
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=self.use_fp16)
if self.use_cuda_kernel:
# preload the CUDA kernel for BigVGAN
try:
from indextts.BigVGAN.alias_free_activation.cuda import load
anti_alias_activation_cuda = load.load()
print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
except:
print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
self.use_cuda_kernel = False
self.extract_features = SeamlessM4TFeatureExtractor.from_pretrained("facebook/w2v-bert-2.0")
self.semantic_model, self.semantic_mean, self.semantic_std = build_semantic_model(
os.path.join(self.model_dir, self.cfg.w2v_stat))
self.semantic_model = self.semantic_model.to(self.device)
self.semantic_model.eval()
self.semantic_mean = self.semantic_mean.to(self.device)
self.semantic_std = self.semantic_std.to(self.device)
semantic_codec = build_semantic_codec(self.cfg.semantic_codec)
semantic_code_ckpt = hf_hub_download("amphion/MaskGCT", filename="semantic_codec/model.safetensors")
safetensors.torch.load_model(semantic_codec, semantic_code_ckpt)
self.semantic_codec = semantic_codec.to(self.device)
self.semantic_codec.eval()
print('>> semantic_codec weights restored from: {}'.format(semantic_code_ckpt))
s2mel_path = os.path.join(self.model_dir, self.cfg.s2mel_checkpoint)
s2mel = MyModel(self.cfg.s2mel, use_gpt_latent=True)
s2mel, _, _, _ = load_checkpoint2(
s2mel,
None,
s2mel_path,
load_only_params=True,
ignore_modules=[],
is_distributed=False,
)
self.s2mel = s2mel.to(self.device)
self.s2mel.models['cfm'].estimator.setup_caches(max_batch_size=1, max_seq_length=8192)
self.s2mel.eval()
print(">> s2mel weights restored from:", s2mel_path)
# load campplus_model
campplus_ckpt_path = hf_hub_download(
"funasr/campplus", filename="campplus_cn_common.bin"
)
campplus_model = CAMPPlus(feat_dim=80, embedding_size=192)
campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu"))
self.campplus_model = campplus_model.to(self.device)
self.campplus_model.eval()
print(">> campplus_model weights restored from:", campplus_ckpt_path)
bigvgan_name = self.cfg.vocoder.name
self.bigvgan = bigvgan.BigVGAN.from_pretrained(bigvgan_name, use_cuda_kernel=self.use_cuda_kernel)
self.bigvgan = self.bigvgan.to(self.device)
self.bigvgan.remove_weight_norm()
self.bigvgan.eval()
print(">> bigvgan weights restored from:", bigvgan_name)
self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
self.normalizer = TextNormalizer()
self.normalizer.load()
print(">> TextNormalizer loaded")
self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
print(">> bpe model loaded from:", self.bpe_path)
emo_matrix = torch.load(os.path.join(self.model_dir, self.cfg.emo_matrix))
self.emo_matrix = emo_matrix.to(self.device)
self.emo_num = list(self.cfg.emo_num)
spk_matrix = torch.load(os.path.join(self.model_dir, self.cfg.spk_matrix))
self.spk_matrix = spk_matrix.to(self.device)
self.emo_matrix = torch.split(self.emo_matrix, self.emo_num)
self.spk_matrix = torch.split(self.spk_matrix, self.emo_num)
mel_fn_args = {
"n_fft": self.cfg.s2mel['preprocess_params']['spect_params']['n_fft'],
"win_size": self.cfg.s2mel['preprocess_params']['spect_params']['win_length'],
"hop_size": self.cfg.s2mel['preprocess_params']['spect_params']['hop_length'],
"num_mels": self.cfg.s2mel['preprocess_params']['spect_params']['n_mels'],
"sampling_rate": self.cfg.s2mel["preprocess_params"]["sr"],
"fmin": self.cfg.s2mel['preprocess_params']['spect_params'].get('fmin', 0),
"fmax": None if self.cfg.s2mel['preprocess_params']['spect_params'].get('fmax', "None") == "None" else 8000,
"center": False
}
self.mel_fn = lambda x: mel_spectrogram(x, **mel_fn_args)
# 缓存参考音频:
self.cache_spk_cond = None
self.cache_s2mel_style = None
self.cache_s2mel_prompt = None
self.cache_spk_audio_prompt = None
self.cache_emo_cond = None
self.cache_emo_audio_prompt = None
self.cache_mel = None
# 进度引用显示(可选)
self.gr_progress = None
self.model_version = self.cfg.version if hasattr(self.cfg, "version") else None
@torch.no_grad()
def get_emb(self, input_features, attention_mask):
vq_emb = self.semantic_model(
input_features=input_features,
attention_mask=attention_mask,
output_hidden_states=True,
)
feat = vq_emb.hidden_states[17] # (B, T, C)
feat = (feat - self.semantic_mean) / self.semantic_std
return feat
def remove_long_silence(self, codes: torch.Tensor, silent_token=52, max_consecutive=30):
"""
Shrink special tokens (silent_token and stop_mel_token) in codes
codes: [B, T]
"""
code_lens = []
codes_list = []
device = codes.device
dtype = codes.dtype
isfix = False
for i in range(0, codes.shape[0]):
code = codes[i]
if not torch.any(code == self.stop_mel_token).item():
len_ = code.size(0)
else:
stop_mel_idx = (code == self.stop_mel_token).nonzero(as_tuple=False)
len_ = stop_mel_idx[0].item() if len(stop_mel_idx) > 0 else code.size(0)
count = torch.sum(code == silent_token).item()
if count > max_consecutive:
# code = code.cpu().tolist()
ncode_idx = []
n = 0
for k in range(len_):
assert code[
k] != self.stop_mel_token, f"stop_mel_token {self.stop_mel_token} should be shrinked here"
if code[k] != silent_token:
ncode_idx.append(k)
n = 0
elif code[k] == silent_token and n < 10:
ncode_idx.append(k)
n += 1
# if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
# n += 1
# new code
len_ = len(ncode_idx)
codes_list.append(code[ncode_idx])
isfix = True
else:
# shrink to len_
codes_list.append(code[:len_])
code_lens.append(len_)
if isfix:
if len(codes_list) > 1:
codes = pad_sequence(codes_list, batch_first=True, padding_value=self.stop_mel_token)
else:
codes = codes_list[0].unsqueeze(0)
else:
# unchanged
pass
# clip codes to max length
max_len = max(code_lens)
if max_len < codes.shape[1]:
codes = codes[:, :max_len]
code_lens = torch.tensor(code_lens, dtype=torch.long, device=device)
return codes, code_lens
def insert_interval_silence(self, wavs, sampling_rate=22050, interval_silence=200):
"""
Insert silences between generated segments.
wavs: List[torch.tensor]
"""
if not wavs or interval_silence <= 0:
return wavs
# get channel_size
channel_size = wavs[0].size(0)
# get silence tensor
sil_dur = int(sampling_rate * interval_silence / 1000.0)
sil_tensor = torch.zeros(channel_size, sil_dur)
wavs_list = []
for i, wav in enumerate(wavs):
wavs_list.append(wav)
if i < len(wavs) - 1:
wavs_list.append(sil_tensor)
return wavs_list
def _set_gr_progress(self, value, desc):
if self.gr_progress is not None:
self.gr_progress(value, desc=desc)
def _load_and_cut_audio(self,audio_path,max_audio_length_seconds,verbose=False,sr=None):
if not sr:
audio, sr = librosa.load(audio_path)
else:
audio, _ = librosa.load(audio_path,sr=sr)
audio = torch.tensor(audio).unsqueeze(0)
max_audio_samples = int(max_audio_length_seconds * sr)
if audio.shape[1] > max_audio_samples:
if verbose:
print(f"Audio too long ({audio.shape[1]} samples), truncating to {max_audio_samples} samples")
audio = audio[:, :max_audio_samples]
return audio, sr
# 原始推理模式
def infer(self, spk_audio_prompt, text, output_path,
emo_audio_prompt=None, emo_alpha=1.0,
emo_vector=None,
use_emo_text=False, emo_text=None, use_random=False, interval_silence=200,
verbose=False, max_text_tokens_per_segment=120, **generation_kwargs):
print(">> starting inference...")
self._set_gr_progress(0, "starting inference...")
if verbose:
print(f"origin text:{text}, spk_audio_prompt:{spk_audio_prompt}, "
f"emo_audio_prompt:{emo_audio_prompt}, emo_alpha:{emo_alpha}, "
f"emo_vector:{emo_vector}, use_emo_text:{use_emo_text}, "
f"emo_text:{emo_text}")
start_time = time.perf_counter()
if use_emo_text or emo_vector is not None:
# we're using a text or emotion vector guidance; so we must remove
# "emotion reference voice", to ensure we use correct emotion mixing!
emo_audio_prompt = None
if use_emo_text:
# automatically generate emotion vectors from text prompt
if emo_text is None:
emo_text = text # use main text prompt
emo_dict = self.qwen_emo.inference(emo_text)
print(f"detected emotion vectors from text: {emo_dict}")
# convert ordered dict to list of vectors; the order is VERY important!
emo_vector = list(emo_dict.values())
if emo_vector is not None:
# we have emotion vectors; they can't be blended via alpha mixing
# in the main inference process later, so we must pre-calculate
# their new strengths here based on the alpha instead!
emo_vector_scale = max(0.0, min(1.0, emo_alpha))
if emo_vector_scale != 1.0:
# scale each vector and truncate to 4 decimals (for nicer printing)
emo_vector = [int(x * emo_vector_scale * 10000) / 10000 for x in emo_vector]
print(f"scaled emotion vectors to {emo_vector_scale}x: {emo_vector}")
if emo_audio_prompt is None:
# we are not using any external "emotion reference voice"; use
# speaker's voice as the main emotion reference audio.
emo_audio_prompt = spk_audio_prompt
# must always use alpha=1.0 when we don't have an external reference voice
emo_alpha = 1.0
# 如果参考音频改变了,才需要重新生成, 提升速度
if self.cache_spk_cond is None or self.cache_spk_audio_prompt != spk_audio_prompt:
audio,sr = self._load_and_cut_audio(spk_audio_prompt,15,verbose)
audio_22k = torchaudio.transforms.Resample(sr, 22050)(audio)
audio_16k = torchaudio.transforms.Resample(sr, 16000)(audio)
inputs = self.extract_features(audio_16k, sampling_rate=16000, return_tensors="pt")
input_features = inputs["input_features"]
attention_mask = inputs["attention_mask"]
input_features = input_features.to(self.device)
attention_mask = attention_mask.to(self.device)
spk_cond_emb = self.get_emb(input_features, attention_mask)
_, S_ref = self.semantic_codec.quantize(spk_cond_emb)
ref_mel = self.mel_fn(audio_22k.to(spk_cond_emb.device).float())
ref_target_lengths = torch.LongTensor([ref_mel.size(2)]).to(ref_mel.device)
feat = torchaudio.compliance.kaldi.fbank(audio_16k.to(ref_mel.device),
num_mel_bins=80,
dither=0,
sample_frequency=16000)
feat = feat - feat.mean(dim=0, keepdim=True) # feat2另外一个滤波器能量组特征[922, 80]
style = self.campplus_model(feat.unsqueeze(0)) # 参考音频的全局style2[1,192]
prompt_condition = self.s2mel.models['length_regulator'](S_ref,
ylens=ref_target_lengths,
n_quantizers=3,
f0=None)[0]
self.cache_spk_cond = spk_cond_emb
self.cache_s2mel_style = style
self.cache_s2mel_prompt = prompt_condition
self.cache_spk_audio_prompt = spk_audio_prompt
self.cache_mel = ref_mel
else:
style = self.cache_s2mel_style
prompt_condition = self.cache_s2mel_prompt
spk_cond_emb = self.cache_spk_cond
ref_mel = self.cache_mel
if emo_vector is not None:
weight_vector = torch.tensor(emo_vector).to(self.device)
if use_random:
random_index = [random.randint(0, x - 1) for x in self.emo_num]
else:
random_index = [find_most_similar_cosine(style, tmp) for tmp in self.spk_matrix]
emo_matrix = [tmp[index].unsqueeze(0) for index, tmp in zip(random_index, self.emo_matrix)]
emo_matrix = torch.cat(emo_matrix, 0)
emovec_mat = weight_vector.unsqueeze(1) * emo_matrix
emovec_mat = torch.sum(emovec_mat, 0)
emovec_mat = emovec_mat.unsqueeze(0)
if self.cache_emo_cond is None or self.cache_emo_audio_prompt != emo_audio_prompt:
emo_audio, _ = self._load_and_cut_audio(emo_audio_prompt,15,verbose,sr=16000)
emo_inputs = self.extract_features(emo_audio, sampling_rate=16000, return_tensors="pt")
emo_input_features = emo_inputs["input_features"]
emo_attention_mask = emo_inputs["attention_mask"]
emo_input_features = emo_input_features.to(self.device)
emo_attention_mask = emo_attention_mask.to(self.device)
emo_cond_emb = self.get_emb(emo_input_features, emo_attention_mask)
self.cache_emo_cond = emo_cond_emb
self.cache_emo_audio_prompt = emo_audio_prompt
else:
emo_cond_emb = self.cache_emo_cond
self._set_gr_progress(0.1, "text processing...")
text_tokens_list = self.tokenizer.tokenize(text)
segments = self.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment)
segments_count = len(segments)
if verbose:
print("text_tokens_list:", text_tokens_list)
print("segments count:", segments_count)
print("max_text_tokens_per_segment:", max_text_tokens_per_segment)
print(*segments, sep="\n")
do_sample = generation_kwargs.pop("do_sample", True)
top_p = generation_kwargs.pop("top_p", 0.8)
top_k = generation_kwargs.pop("top_k", 30)
temperature = generation_kwargs.pop("temperature", 0.8)
autoregressive_batch_size = 1
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
num_beams = generation_kwargs.pop("num_beams", 3)
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 1500)
sampling_rate = 22050
wavs = []
gpt_gen_time = 0
gpt_forward_time = 0
s2mel_time = 0
bigvgan_time = 0
has_warned = False
for seg_idx, sent in enumerate(segments):
self._set_gr_progress(0.2 + 0.7 * seg_idx / segments_count,
f"speech synthesis {seg_idx + 1}/{segments_count}...")
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
if verbose:
print(text_tokens)
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
# debug tokenizer
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
print("text_token_syms is same as segment tokens", text_token_syms == sent)
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
emovec = self.gpt.merge_emovec(
spk_cond_emb,
emo_cond_emb,
torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
alpha=emo_alpha
)
if emo_vector is not None:
emovec = emovec_mat + (1 - torch.sum(weight_vector)) * emovec
# emovec = emovec_mat
codes, speech_conditioning_latent = self.gpt.inference_speech(
spk_cond_emb,
text_tokens,
emo_cond_emb,
cond_lengths=torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
emo_cond_lengths=torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
emo_vec=emovec,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=autoregressive_batch_size,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**generation_kwargs
)
gpt_gen_time += time.perf_counter() - m_start_time
if not has_warned and (codes[:, -1] != self.stop_mel_token).any():
warnings.warn(
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
f"Input text tokens: {text_tokens.shape[1]}. "
f"Consider reducing `max_text_tokens_per_segment`({max_text_tokens_per_segment}) or increasing `max_mel_tokens`.",
category=RuntimeWarning
)
has_warned = True
code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
# if verbose:
# print(codes, type(codes))
# print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
# print(f"code len: {code_lens}")
code_lens = []
for code in codes:
if self.stop_mel_token not in code:
code_lens.append(len(code))
code_len = len(code)
else:
len_ = (code == self.stop_mel_token).nonzero(as_tuple=False)[0] + 1
code_len = len_ - 1
code_lens.append(code_len)
codes = codes[:, :code_len]
code_lens = torch.LongTensor(code_lens)
code_lens = code_lens.to(self.device)
if verbose:
print(codes, type(codes))
print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
print(f"code len: {code_lens}")
m_start_time = time.perf_counter()
use_speed = torch.zeros(spk_cond_emb.size(0)).to(spk_cond_emb.device).long()
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
latent = self.gpt(
speech_conditioning_latent,
text_tokens,
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device),
codes,
torch.tensor([codes.shape[-1]], device=text_tokens.device),
emo_cond_emb,
cond_mel_lengths=torch.tensor([spk_cond_emb.shape[-1]], device=text_tokens.device),
emo_cond_mel_lengths=torch.tensor([emo_cond_emb.shape[-1]], device=text_tokens.device),
emo_vec=emovec,
use_speed=use_speed,
)
gpt_forward_time += time.perf_counter() - m_start_time
dtype = None
with torch.amp.autocast(text_tokens.device.type, enabled=dtype is not None, dtype=dtype):
m_start_time = time.perf_counter()
diffusion_steps = 25
inference_cfg_rate = 0.7
latent = self.s2mel.models['gpt_layer'](latent)
S_infer = self.semantic_codec.quantizer.vq2emb(codes.unsqueeze(1))
S_infer = S_infer.transpose(1, 2)
S_infer = S_infer + latent
target_lengths = (code_lens * 1.72).long()
cond = self.s2mel.models['length_regulator'](S_infer,
ylens=target_lengths,
n_quantizers=3,
f0=None)[0]
cat_condition = torch.cat([prompt_condition, cond], dim=1)
vc_target = self.s2mel.models['cfm'].inference(cat_condition,
torch.LongTensor([cat_condition.size(1)]).to(
cond.device),
ref_mel, style, None, diffusion_steps,
inference_cfg_rate=inference_cfg_rate)
vc_target = vc_target[:, :, ref_mel.size(-1):]
s2mel_time += time.perf_counter() - m_start_time
m_start_time = time.perf_counter()
wav = self.bigvgan(vc_target.float()).squeeze().unsqueeze(0)
print(wav.shape)
bigvgan_time += time.perf_counter() - m_start_time
wav = wav.squeeze(1)
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
if verbose:
print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
# wavs.append(wav[:, :-512])
wavs.append(wav.cpu()) # to cpu before saving
end_time = time.perf_counter()
self._set_gr_progress(0.9, "saving audio...")
wavs = self.insert_interval_silence(wavs, sampling_rate=sampling_rate, interval_silence=interval_silence)
wav = torch.cat(wavs, dim=1)
wav_length = wav.shape[-1] / sampling_rate
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
print(f">> s2mel_time: {s2mel_time:.2f} seconds")
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
print(f">> Total inference time: {end_time - start_time:.2f} seconds")
print(f">> Generated audio length: {wav_length:.2f} seconds")
print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")
# save audio
wav = wav.cpu() # to cpu
if output_path:
# 直接保存音频到指定路径中
if os.path.isfile(output_path):
os.remove(output_path)
print(">> remove old wav file:", output_path)
if os.path.dirname(output_path) != "":
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
print(">> wav file saved to:", output_path)
return output_path
else:
# 返回以符合Gradio的格式要求
wav_data = wav.type(torch.int16)
wav_data = wav_data.numpy().T
return (sampling_rate, wav_data)
def find_most_similar_cosine(query_vector, matrix):
query_vector = query_vector.float()
matrix = matrix.float()
similarities = F.cosine_similarity(query_vector, matrix, dim=1)
most_similar_index = torch.argmax(similarities)
return most_similar_index
class QwenEmotion:
def __init__(self, model_dir):
self.model_dir = model_dir
self.tokenizer = AutoTokenizer.from_pretrained(self.model_dir)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_dir,
torch_dtype="float16", # "auto"
device_map="auto"
)
self.prompt = "文本情感分类"
self.cn_key_to_en = {
"高兴": "happy",
"愤怒": "angry",
"悲伤": "sad",
"恐惧": "afraid",
"反感": "disgusted",
# TODO: the "低落" (melancholic) emotion will always be mapped to
# "悲伤" (sad) by QwenEmotion's text analysis. it doesn't know the
# difference between those emotions even if user writes exact words.
# SEE: `self.melancholic_words` for current workaround.
"低落": "melancholic",
"惊讶": "surprised",
"自然": "calm",
}
self.desired_vector_order = ["高兴", "愤怒", "悲伤", "恐惧", "反感", "低落", "惊讶", "自然"]
self.melancholic_words = {
# emotion text phrases that will force QwenEmotion's "悲伤" (sad) detection
# to become "低落" (melancholic) instead, to fix limitations mentioned above.
"低落",
"melancholy",
"melancholic",
"depression",
"depressed",
"gloomy",
}
self.max_score = 1.2
self.min_score = 0.0
def clamp_score(self, value):
return max(self.min_score, min(self.max_score, value))
def convert(self, content):
# generate emotion vector dictionary:
# - insert values in desired order (Python 3.7+ `dict` remembers insertion order)
# - convert Chinese keys to English
# - clamp all values to the allowed min/max range
# - use 0.0 for any values that were missing in `content`
emotion_dict = {
self.cn_key_to_en[cn_key]: self.clamp_score(content.get(cn_key, 0.0))
for cn_key in self.desired_vector_order
}
# default to a calm/neutral voice if all emotion vectors were empty
if all(val <= 0.0 for val in emotion_dict.values()):
print(">> no emotions detected; using default calm/neutral voice")
emotion_dict["calm"] = 1.0
return emotion_dict
def inference(self, text_input):
start = time.time()
messages = [
{"role": "system", "content": f"{self.prompt}"},
{"role": "user", "content": f"{text_input}"}
]
text = self.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False,
)
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device)
# conduct text completion
generated_ids = self.model.generate(
**model_inputs,
max_new_tokens=32768,
pad_token_id=self.tokenizer.eos_token_id
)
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
# parsing thinking content
try:
# rindex finding 151668 (</think>)
index = len(output_ids) - output_ids[::-1].index(151668)
except ValueError:
index = 0
content = self.tokenizer.decode(output_ids[index:], skip_special_tokens=True)
# decode the JSON emotion detections as a dictionary
try:
content = json.loads(content)
except json.decoder.JSONDecodeError:
# invalid JSON; fallback to manual string parsing
# print(">> parsing QwenEmotion response", content)
content = {
m.group(1): float(m.group(2))
for m in re.finditer(r'([^\s":.,]+?)"?\s*:\s*([\d.]+)', content)
}
# print(">> dict result", content)
# workaround for QwenEmotion's inability to distinguish "悲伤" (sad) vs "低落" (melancholic).
# if we detect any of the IndexTTS "melancholic" words, we swap those vectors
# to encode the "sad" emotion as "melancholic" (instead of sadness).
text_input_lower = text_input.lower()
if any(word in text_input_lower for word in self.melancholic_words):
# print(">> before vec swap", content)
content["悲伤"], content["低落"] = content.get("低落", 0.0), content.get("悲伤", 0.0)
# print(">> after vec swap", content)
return self.convert(content)
if __name__ == "__main__":
prompt_wav = "examples/voice_01.wav"
text = '欢迎大家来体验indextts2并给予我们意见与反馈谢谢大家。'
tts = IndexTTS2(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_cuda_kernel=False)
tts.infer(spk_audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)