Files
index-tts/indextts/infer.py

691 lines
34 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
import os
os.environ['HF_HUB_CACHE'] = './checkpoints/hf_cache'
import time
from subprocess import CalledProcessError
from typing import Dict, List
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from omegaconf import OmegaConf
from tqdm import tqdm
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from indextts.BigVGAN.models import BigVGAN as Generator
from indextts.gpt.model import UnifiedVoice
from indextts.utils.checkpoint import load_checkpoint
from indextts.utils.feature_extractors import MelSpectrogramFeatures
from indextts.utils.front import TextNormalizer, TextTokenizer
class IndexTTS:
def __init__(
self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_fp16=True, device=None,
use_cuda_kernel=None,
):
"""
Args:
cfg_path (str): path to the config file.
model_dir (str): path to the model directory.
use_fp16 (bool): whether to use fp16.
device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
"""
if device is not None:
self.device = device
self.use_fp16 = False if device == "cpu" else use_fp16
self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
elif torch.cuda.is_available():
self.device = "cuda:0"
self.use_fp16 = use_fp16
self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
elif hasattr(torch, "xpu") and torch.xpu.is_available():
self.device = "xpu"
self.use_fp16 = use_fp16
self.use_cuda_kernel = False
elif hasattr(torch, "mps") and torch.backends.mps.is_available():
self.device = "mps"
self.use_fp16 = False # Use float16 on MPS is overhead than float32
self.use_cuda_kernel = False
else:
self.device = "cpu"
self.use_fp16 = False
self.use_cuda_kernel = False
print(">> Be patient, it may take a while to run in CPU mode.")
self.cfg = OmegaConf.load(cfg_path)
self.model_dir = model_dir
self.dtype = torch.float16 if self.use_fp16 else None
self.stop_mel_token = self.cfg.gpt.stop_mel_token
# Comment-off to load the VQ-VAE model for debugging tokenizer
# https://github.com/index-tts/index-tts/issues/34
#
# from indextts.vqvae.xtts_dvae import DiscreteVAE
# self.dvae = DiscreteVAE(**self.cfg.vqvae)
# self.dvae_path = os.path.join(self.model_dir, self.cfg.dvae_checkpoint)
# load_checkpoint(self.dvae, self.dvae_path)
# self.dvae = self.dvae.to(self.device)
# if self.use_fp16:
# self.dvae.eval().half()
# else:
# self.dvae.eval()
# print(">> vqvae weights restored from:", self.dvae_path)
self.gpt = UnifiedVoice(**self.cfg.gpt)
self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
load_checkpoint(self.gpt, self.gpt_path)
self.gpt = self.gpt.to(self.device)
if self.use_fp16:
self.gpt.eval().half()
else:
self.gpt.eval()
print(">> GPT weights restored from:", self.gpt_path)
if self.use_fp16:
try:
import deepspeed
use_deepspeed = True
except (ImportError, OSError, CalledProcessError) as e:
use_deepspeed = False
print(f">> DeepSpeed加载失败回退到标准推理: {e}")
self.gpt.post_init_gpt2_config(use_deepspeed=use_deepspeed, kv_cache=True, half=True)
else:
self.gpt.post_init_gpt2_config(use_deepspeed=False, kv_cache=False, half=False)
if self.use_cuda_kernel:
# preload the CUDA kernel for BigVGAN
try:
from indextts.BigVGAN.alias_free_activation.cuda import load
anti_alias_activation_cuda = load.load()
print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
except:
print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
self.use_cuda_kernel = False
self.bigvgan = Generator(self.cfg.bigvgan, use_cuda_kernel=self.use_cuda_kernel)
self.bigvgan_path = os.path.join(self.model_dir, self.cfg.bigvgan_checkpoint)
vocoder_dict = torch.load(self.bigvgan_path, map_location="cpu")
self.bigvgan.load_state_dict(vocoder_dict["generator"])
self.bigvgan = self.bigvgan.to(self.device)
# remove weight norm on eval mode
self.bigvgan.remove_weight_norm()
self.bigvgan.eval()
print(">> bigvgan weights restored from:", self.bigvgan_path)
self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
self.normalizer = TextNormalizer()
self.normalizer.load()
print(">> TextNormalizer loaded")
self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
print(">> bpe model loaded from:", self.bpe_path)
# 缓存参考音频mel
self.cache_audio_prompt = None
self.cache_cond_mel = None
# 进度引用显示(可选)
self.gr_progress = None
self.model_version = self.cfg.version if hasattr(self.cfg, "version") else None
def remove_long_silence(self, codes: torch.Tensor, silent_token=52, max_consecutive=30):
"""
Shrink special tokens (silent_token and stop_mel_token) in codes
codes: [B, T]
"""
code_lens = []
codes_list = []
device = codes.device
dtype = codes.dtype
isfix = False
for i in range(0, codes.shape[0]):
code = codes[i]
if not torch.any(code == self.stop_mel_token).item():
len_ = code.size(0)
else:
stop_mel_idx = (code == self.stop_mel_token).nonzero(as_tuple=False)
len_ = stop_mel_idx[0].item() if len(stop_mel_idx) > 0 else code.size(0)
count = torch.sum(code == silent_token).item()
if count > max_consecutive:
# code = code.cpu().tolist()
ncode_idx = []
n = 0
for k in range(len_):
assert code[
k] != self.stop_mel_token, f"stop_mel_token {self.stop_mel_token} should be shrinked here"
if code[k] != silent_token:
ncode_idx.append(k)
n = 0
elif code[k] == silent_token and n < 10:
ncode_idx.append(k)
n += 1
# if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
# n += 1
# new code
len_ = len(ncode_idx)
codes_list.append(code[ncode_idx])
isfix = True
else:
# shrink to len_
codes_list.append(code[:len_])
code_lens.append(len_)
if isfix:
if len(codes_list) > 1:
codes = pad_sequence(codes_list, batch_first=True, padding_value=self.stop_mel_token)
else:
codes = codes_list[0].unsqueeze(0)
else:
# unchanged
pass
# clip codes to max length
max_len = max(code_lens)
if max_len < codes.shape[1]:
codes = codes[:, :max_len]
code_lens = torch.tensor(code_lens, dtype=torch.long, device=device)
return codes, code_lens
def bucket_segments(self, segments, bucket_max_size=4) -> List[List[Dict]]:
"""
Segment data bucketing.
if ``bucket_max_size=1``, return all segments in one bucket.
"""
outputs: List[Dict] = []
for idx, sent in enumerate(segments):
outputs.append({"idx": idx, "sent": sent, "len": len(sent)})
if len(outputs) > bucket_max_size:
# split segments into buckets by segment length
buckets: List[List[Dict]] = []
factor = 1.5
last_bucket = None
last_bucket_sent_len_median = 0
for sent in sorted(outputs, key=lambda x: x["len"]):
current_sent_len = sent["len"]
if current_sent_len == 0:
print(">> skip empty segment")
continue
if last_bucket is None \
or current_sent_len >= int(last_bucket_sent_len_median * factor) \
or len(last_bucket) >= bucket_max_size:
# new bucket
buckets.append([sent])
last_bucket = buckets[-1]
last_bucket_sent_len_median = current_sent_len
else:
# current bucket can hold more segments
last_bucket.append(sent) # sorted
mid = len(last_bucket) // 2
last_bucket_sent_len_median = last_bucket[mid]["len"]
last_bucket = None
# merge all buckets with size 1
out_buckets: List[List[Dict]] = []
only_ones: List[Dict] = []
for b in buckets:
if len(b) == 1:
only_ones.append(b[0])
else:
out_buckets.append(b)
if len(only_ones) > 0:
# merge into previous buckets if possible
# print("only_ones:", [(o["idx"], o["len"]) for o in only_ones])
for i in range(len(out_buckets)):
b = out_buckets[i]
if len(b) < bucket_max_size:
b.append(only_ones.pop(0))
if len(only_ones) == 0:
break
# combined all remaining sized 1 buckets
if len(only_ones) > 0:
out_buckets.extend(
[only_ones[i:i + bucket_max_size] for i in range(0, len(only_ones), bucket_max_size)])
return out_buckets
return [outputs]
def pad_tokens_cat(self, tokens: List[torch.Tensor]) -> torch.Tensor:
if self.model_version and self.model_version >= 1.5:
# 1.5版本以上直接使用stop_text_token 右侧填充,填充到最大长度
# [1, N] -> [N,]
tokens = [t.squeeze(0) for t in tokens]
return pad_sequence(tokens, batch_first=True, padding_value=self.cfg.gpt.stop_text_token,
padding_side="right")
max_len = max(t.size(1) for t in tokens)
outputs = []
for tensor in tokens:
pad_len = max_len - tensor.size(1)
if pad_len > 0:
n = min(8, pad_len)
tensor = torch.nn.functional.pad(tensor, (0, n), value=self.cfg.gpt.stop_text_token)
tensor = torch.nn.functional.pad(tensor, (0, pad_len - n), value=self.cfg.gpt.start_text_token)
tensor = tensor[:, :max_len]
outputs.append(tensor)
tokens = torch.cat(outputs, dim=0)
return tokens
def torch_empty_cache(self):
try:
if "cuda" in str(self.device):
torch.cuda.empty_cache()
elif "mps" in str(self.device):
torch.mps.empty_cache()
except Exception as e:
pass
def _set_gr_progress(self, value, desc):
if self.gr_progress is not None:
self.gr_progress(value, desc=desc)
# 快速推理:对于“多句长文本”,可实现至少 2~10 倍以上的速度提升~ First modified by sunnyboxs 2025-04-16
def infer_fast(self, audio_prompt, text, output_path, verbose=False, max_text_tokens_per_segment=100,
segments_bucket_max_size=4, **generation_kwargs):
"""
Args:
``max_text_tokens_per_segment``: 分句的最大token数默认``100``可以根据GPU硬件情况调整
- 越小batch 越多,推理速度越*快*,占用内存更多,可能影响质量
- 越大batch 越少,推理速度越*慢*,占用内存和质量更接近于非快速推理
``segments_bucket_max_size``: 分句分桶的最大容量,默认``4``可以根据GPU内存调整
- 越大bucket数量越少batch越多推理速度越*快*,占用内存更多,可能影响质量
- 越小bucket数量越多batch越少推理速度越*慢*,占用内存和质量更接近于非快速推理
"""
print(">> starting fast inference...")
self._set_gr_progress(0, "starting fast inference...")
if verbose:
print(f"origin text:{text}")
start_time = time.perf_counter()
# 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
audio, sr = torchaudio.load(audio_prompt)
audio = torch.mean(audio, dim=0, keepdim=True)
if audio.shape[0] > 1:
audio = audio[0].unsqueeze(0)
audio = torchaudio.transforms.Resample(sr, 24000)(audio)
max_audio_length_seconds = 50
max_audio_samples = int(max_audio_length_seconds * 24000)
if audio.shape[1] > max_audio_samples:
if verbose:
print(f"Audio too long ({audio.shape[1]} samples), truncating to {max_audio_samples} samples")
audio = audio[:, :max_audio_samples]
cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
cond_mel_frame = cond_mel.shape[-1]
if verbose:
print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)
self.cache_audio_prompt = audio_prompt
self.cache_cond_mel = cond_mel
else:
cond_mel = self.cache_cond_mel
cond_mel_frame = cond_mel.shape[-1]
pass
auto_conditioning = cond_mel
cond_mel_lengths = torch.tensor([cond_mel_frame], device=self.device)
# text_tokens
text_tokens_list = self.tokenizer.tokenize(text)
segments = self.tokenizer.split_segments(text_tokens_list,
max_text_tokens_per_segment=max_text_tokens_per_segment)
if verbose:
print(">> text token count:", len(text_tokens_list))
print(" segments count:", len(segments))
print(" max_text_tokens_per_segment:", max_text_tokens_per_segment)
print(*segments, sep="\n")
do_sample = generation_kwargs.pop("do_sample", True)
top_p = generation_kwargs.pop("top_p", 0.8)
top_k = generation_kwargs.pop("top_k", 30)
temperature = generation_kwargs.pop("temperature", 1.0)
autoregressive_batch_size = 1
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
num_beams = generation_kwargs.pop("num_beams", 3)
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 600)
sampling_rate = 24000
# lang = "EN"
# lang = "ZH"
wavs = []
gpt_gen_time = 0
gpt_forward_time = 0
bigvgan_time = 0
# text processing
all_text_tokens: List[List[torch.Tensor]] = []
self._set_gr_progress(0.1, "text processing...")
bucket_max_size = segments_bucket_max_size if self.device != "cpu" else 1
all_segments = self.bucket_segments(segments, bucket_max_size=bucket_max_size)
bucket_count = len(all_segments)
if verbose:
print(">> segments bucket_count:", bucket_count,
"bucket sizes:", [(len(s), [t["idx"] for t in s]) for s in all_segments],
"bucket_max_size:", bucket_max_size)
for segments in all_segments:
temp_tokens: List[torch.Tensor] = []
all_text_tokens.append(temp_tokens)
for item in segments:
sent = item["sent"]
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
if verbose:
print(text_tokens)
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
# debug tokenizer
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
print("text_token_syms is same as segment tokens", text_token_syms == sent)
temp_tokens.append(text_tokens)
# Sequential processing of bucketing data
all_batch_num = sum(len(s) for s in all_segments)
all_batch_codes = []
processed_num = 0
for item_tokens in all_text_tokens:
batch_num = len(item_tokens)
if batch_num > 1:
batch_text_tokens = self.pad_tokens_cat(item_tokens)
else:
batch_text_tokens = item_tokens[0]
processed_num += batch_num
# gpt speech
self._set_gr_progress(0.2 + 0.3 * processed_num / all_batch_num,
f"gpt speech inference {processed_num}/{all_batch_num}...")
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(batch_text_tokens.device.type, enabled=self.dtype is not None,
dtype=self.dtype):
temp_codes = self.gpt.inference_speech(auto_conditioning, batch_text_tokens,
cond_mel_lengths=cond_mel_lengths,
# text_lengths=text_len,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=autoregressive_batch_size,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**generation_kwargs)
all_batch_codes.append(temp_codes)
gpt_gen_time += time.perf_counter() - m_start_time
# gpt latent
self._set_gr_progress(0.5, "gpt latents inference...")
all_idxs = []
all_latents = []
has_warned = False
for batch_codes, batch_tokens, batch_segments in zip(all_batch_codes, all_text_tokens, all_segments):
for i in range(batch_codes.shape[0]):
codes = batch_codes[i] # [x]
if not has_warned and codes[-1] != self.stop_mel_token:
warnings.warn(
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
f"Consider reducing `max_text_tokens_per_segment`({max_text_tokens_per_segment}) or increasing `max_mel_tokens`.",
category=RuntimeWarning
)
has_warned = True
codes = codes.unsqueeze(0) # [x] -> [1, x]
if verbose:
print("codes:", codes.shape)
print(codes)
codes, code_lens = self.remove_long_silence(codes, silent_token=52, max_consecutive=30)
if verbose:
print("fix codes:", codes.shape)
print(codes)
print("code_lens:", code_lens)
text_tokens = batch_tokens[i]
all_idxs.append(batch_segments[i]["idx"])
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
latent = \
self.gpt(auto_conditioning, text_tokens,
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
code_lens * self.gpt.mel_length_compression,
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
device=text_tokens.device),
return_latent=True, clip_inputs=False)
gpt_forward_time += time.perf_counter() - m_start_time
all_latents.append(latent)
del all_batch_codes, all_text_tokens, all_segments
# bigvgan chunk
chunk_size = 2
all_latents = [all_latents[all_idxs.index(i)] for i in range(len(all_latents))]
if verbose:
print(">> all_latents:", len(all_latents))
print(" latents length:", [l.shape[1] for l in all_latents])
chunk_latents = [all_latents[i: i + chunk_size] for i in range(0, len(all_latents), chunk_size)]
chunk_length = len(chunk_latents)
latent_length = len(all_latents)
# bigvgan chunk decode
self._set_gr_progress(0.7, "bigvgan decoding...")
tqdm_progress = tqdm(total=latent_length, desc="bigvgan")
for items in chunk_latents:
tqdm_progress.update(len(items))
latent = torch.cat(items, dim=1)
with torch.no_grad():
with torch.amp.autocast(latent.device.type, enabled=self.dtype is not None, dtype=self.dtype):
m_start_time = time.perf_counter()
wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
bigvgan_time += time.perf_counter() - m_start_time
wav = wav.squeeze(1)
pass
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
wavs.append(wav.cpu()) # to cpu before saving
# clear cache
tqdm_progress.close() # 确保进度条被关闭
del all_latents, chunk_latents
end_time = time.perf_counter()
self.torch_empty_cache()
# wav audio output
self._set_gr_progress(0.9, "saving audio...")
wav = torch.cat(wavs, dim=1)
wav_length = wav.shape[-1] / sampling_rate
print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
print(f">> Total fast inference time: {end_time - start_time:.2f} seconds")
print(f">> Generated audio length: {wav_length:.2f} seconds")
print(f">> [fast] bigvgan chunk_length: {chunk_length}")
print(f">> [fast] batch_num: {all_batch_num} bucket_max_size: {bucket_max_size}",
f"bucket_count: {bucket_count}" if bucket_max_size > 1 else "")
print(f">> [fast] RTF: {(end_time - start_time) / wav_length:.4f}")
# save audio
wav = wav.cpu() # to cpu
if output_path:
# 直接保存音频到指定路径中
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
print(">> wav file saved to:", output_path)
return output_path
else:
# 返回以符合Gradio的格式要求
wav_data = wav.type(torch.int16)
wav_data = wav_data.numpy().T
return (sampling_rate, wav_data)
# 原始推理模式
def infer(self, audio_prompt, text, output_path, verbose=False, max_text_tokens_per_segment=120,
**generation_kwargs):
print(">> starting inference...")
self._set_gr_progress(0, "starting inference...")
if verbose:
print(f"origin text:{text}")
start_time = time.perf_counter()
# 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
audio, sr = torchaudio.load(audio_prompt)
audio = torch.mean(audio, dim=0, keepdim=True)
if audio.shape[0] > 1:
audio = audio[0].unsqueeze(0)
audio = torchaudio.transforms.Resample(sr, 24000)(audio)
cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
cond_mel_frame = cond_mel.shape[-1]
if verbose:
print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)
self.cache_audio_prompt = audio_prompt
self.cache_cond_mel = cond_mel
else:
cond_mel = self.cache_cond_mel
cond_mel_frame = cond_mel.shape[-1]
pass
self._set_gr_progress(0.1, "text processing...")
auto_conditioning = cond_mel
text_tokens_list = self.tokenizer.tokenize(text)
segments = self.tokenizer.split_segments(text_tokens_list, max_text_tokens_per_segment)
if verbose:
print("text token count:", len(text_tokens_list))
print("segments count:", len(segments))
print("max_text_tokens_per_segment:", max_text_tokens_per_segment)
print(*segments, sep="\n")
do_sample = generation_kwargs.pop("do_sample", True)
top_p = generation_kwargs.pop("top_p", 0.8)
top_k = generation_kwargs.pop("top_k", 30)
temperature = generation_kwargs.pop("temperature", 1.0)
autoregressive_batch_size = 1
length_penalty = generation_kwargs.pop("length_penalty", 0.0)
num_beams = generation_kwargs.pop("num_beams", 3)
repetition_penalty = generation_kwargs.pop("repetition_penalty", 10.0)
max_mel_tokens = generation_kwargs.pop("max_mel_tokens", 600)
sampling_rate = 24000
# lang = "EN"
# lang = "ZH"
wavs = []
gpt_gen_time = 0
gpt_forward_time = 0
bigvgan_time = 0
progress = 0
has_warned = False
for sent in segments:
text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
# text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary.
# text_tokens = F.pad(text_tokens, (1, 0), value=0)
# text_tokens = F.pad(text_tokens, (0, 1), value=1)
if verbose:
print(text_tokens)
print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
# debug tokenizer
text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
print("text_token_syms is same as segment tokens", text_token_syms == sent)
# text_len = torch.IntTensor([text_tokens.size(1)], device=text_tokens.device)
# print(text_len)
progress += 1
self._set_gr_progress(0.2 + 0.4 * (progress - 1) / len(segments),
f"gpt latents inference {progress}/{len(segments)}...")
m_start_time = time.perf_counter()
with torch.no_grad():
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
codes = self.gpt.inference_speech(auto_conditioning, text_tokens,
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
device=text_tokens.device),
# text_lengths=text_len,
do_sample=do_sample,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_return_sequences=autoregressive_batch_size,
length_penalty=length_penalty,
num_beams=num_beams,
repetition_penalty=repetition_penalty,
max_generate_length=max_mel_tokens,
**generation_kwargs)
gpt_gen_time += time.perf_counter() - m_start_time
if not has_warned and (codes[:, -1] != self.stop_mel_token).any():
warnings.warn(
f"WARN: generation stopped due to exceeding `max_mel_tokens` ({max_mel_tokens}). "
f"Input text tokens: {text_tokens.shape[1]}. "
f"Consider reducing `max_text_tokens_per_segment`({max_text_tokens_per_segment}) or increasing `max_mel_tokens`.",
category=RuntimeWarning
)
has_warned = True
code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
if verbose:
print(codes, type(codes))
print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
print(f"code len: {code_lens}")
# remove ultra-long silence if exits
# temporarily fix the long silence bug.
codes, code_lens = self.remove_long_silence(codes, silent_token=52, max_consecutive=30)
if verbose:
print(codes, type(codes))
print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
print(f"code len: {code_lens}")
self._set_gr_progress(0.2 + 0.4 * progress / len(segments),
f"gpt speech inference {progress}/{len(segments)}...")
m_start_time = time.perf_counter()
# latent, text_lens_out, code_lens_out = \
with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
latent = \
self.gpt(auto_conditioning, text_tokens,
torch.tensor([text_tokens.shape[-1]], device=text_tokens.device), codes,
code_lens * self.gpt.mel_length_compression,
cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
device=text_tokens.device),
return_latent=True, clip_inputs=False)
gpt_forward_time += time.perf_counter() - m_start_time
m_start_time = time.perf_counter()
wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
bigvgan_time += time.perf_counter() - m_start_time
wav = wav.squeeze(1)
wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
if verbose:
print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
# wavs.append(wav[:, :-512])
wavs.append(wav.cpu()) # to cpu before saving
end_time = time.perf_counter()
self._set_gr_progress(0.9, "saving audio...")
wav = torch.cat(wavs, dim=1)
wav_length = wav.shape[-1] / sampling_rate
print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
print(f">> gpt_forward_time: {gpt_forward_time:.2f} seconds")
print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
print(f">> Total inference time: {end_time - start_time:.2f} seconds")
print(f">> Generated audio length: {wav_length:.2f} seconds")
print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")
# save audio
wav = wav.cpu() # to cpu
if output_path:
# 直接保存音频到指定路径中
if os.path.isfile(output_path):
os.remove(output_path)
print(">> remove old wav file:", output_path)
if os.path.dirname(output_path) != "":
os.makedirs(os.path.dirname(output_path), exist_ok=True)
torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
print(">> wav file saved to:", output_path)
return output_path
else:
# 返回以符合Gradio的格式要求
wav_data = wav.type(torch.int16)
wav_data = wav_data.numpy().T
return (sampling_rate, wav_data)
if __name__ == "__main__":
prompt_wav = "examples/voice_01.wav"
text = '欢迎大家来体验indextts2并给予我们意见与反馈谢谢大家。'
tts = IndexTTS(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", use_cuda_kernel=False)
tts.infer(audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)