package cache import ( "fmt" "math" "sync" "sync/atomic" "time" ) // AdaptiveTuningEngine 自适应调优引擎 type AdaptiveTuningEngine struct { // 核心组件 metricCollector *MetricCollector performanceAnalyzer *PerformanceAnalyzer predictiveModel *PredictiveModel tuningStrategy *TuningStrategy // 配置参数 config *AdaptiveTuningConfig // 运行状态 isRunning int32 shutdownChan chan struct{} // 调优历史 tuningHistory []*TuningRecord historyMutex sync.RWMutex maxHistorySize int // 学习数据 learningData *LearningDataset // 统计信息 stats *TuningEngineStats mutex sync.RWMutex } // AdaptiveTuningConfig 自适应调优配置 type AdaptiveTuningConfig struct { // 调优间隔 TuningInterval time.Duration MetricInterval time.Duration // 性能阈值 CPUUsageThreshold float64 MemoryThreshold int64 LatencyThreshold time.Duration // 学习参数 LearningRate float64 AdaptationSpeed float64 StabilityFactor float64 // 调优范围 MinBatchInterval time.Duration MaxBatchInterval time.Duration MinBatchSize int MaxBatchSize int // 安全参数 MaxAdjustmentRatio float64 // 最大调整幅度 RollbackThreshold float64 // 回滚阈值 // 预测参数 PredictionWindow time.Duration ConfidenceThreshold float64 } // MetricCollector 指标收集器 type MetricCollector struct { // 系统指标 systemMetrics *SystemMetrics // 应用指标 applicationMetrics *ApplicationMetrics // 缓存指标 cacheMetrics *CacheMetrics // 历史数据 metricsHistory []MetricSnapshot historyMutex sync.RWMutex maxHistorySize int // 采集状态 isCollecting int32 collectionChan chan struct{} } // SystemMetrics 系统指标 type SystemMetrics struct { Timestamp time.Time CPUUsage float64 MemoryUsage int64 MemoryTotal int64 DiskIORate float64 NetworkIORate float64 GoroutineCount int GCPauseDuration time.Duration HeapSize int64 AllocRate float64 } // ApplicationMetrics 应用指标 type ApplicationMetrics struct { Timestamp time.Time RequestRate float64 ResponseTime time.Duration ErrorRate float64 ThroughputMBps float64 ConcurrentUsers int QueueDepth int ProcessingRate float64 } // CacheMetrics 缓存指标 type CacheMetrics struct { Timestamp time.Time HitRate float64 WriteRate float64 ReadRate float64 EvictionRate float64 CompressionRatio float64 StorageUsage int64 BufferUtilization float64 BatchEfficiency float64 } // MetricSnapshot 指标快照 type MetricSnapshot struct { Timestamp time.Time System SystemMetrics Application ApplicationMetrics Cache CacheMetrics // 综合指标 OverallPerformance float64 Efficiency float64 Stability float64 } // PerformanceAnalyzer 性能分析器 type PerformanceAnalyzer struct { // 分析算法 trendAnalyzer *TrendAnalyzer anomalyDetector *AnomalyDetector correlationAnalyzer *CorrelationAnalyzer // 分析结果 currentTrends map[string]Trend detectedAnomalies []Anomaly correlations map[string]float64 mutex sync.RWMutex } // Trend 趋势 type Trend struct { Metric string Direction string // increasing, decreasing, stable Slope float64 Confidence float64 Duration time.Duration Prediction float64 } // Anomaly 异常 type Anomaly struct { Metric string Timestamp time.Time Severity string // low, medium, high Value float64 ExpectedRange [2]float64 Description string Impact float64 } // PredictiveModel 预测模型 type PredictiveModel struct { // 模型类型 modelType string // linear_regression, exponential_smoothing, arima // 模型参数 coefficients []float64 seasonalFactors []float64 trendComponent float64 // 训练数据 trainingData []DataPoint testData []DataPoint // 模型性能 accuracy float64 rmse float64 mae float64 // 预测结果 predictions map[string]Prediction mutex sync.RWMutex } // DataPoint 数据点 type DataPoint struct { Timestamp time.Time Values map[string]float64 Label string } // Prediction 预测 type Prediction struct { Metric string FutureValue float64 Confidence float64 TimeHorizon time.Duration PredictedAt time.Time ActualValue *float64 // 用于验证预测准确性 } // TuningStrategy 调优策略 type TuningStrategy struct { // 策略类型 strategyType string // conservative, aggressive, balanced // 调优规则 rules []*TuningRule // 参数调整 parameterAdjustments map[string]ParameterAdjustment // 执行历史 executionHistory []*StrategyExecution mutex sync.RWMutex } // TuningRule 调优规则 type TuningRule struct { Name string Condition func(*MetricSnapshot) bool Action func(*AdaptiveTuningEngine) (*TuningDecision, error) Priority int Enabled bool LastTriggered time.Time TriggerCount int64 } // ParameterAdjustment 参数调整 type ParameterAdjustment struct { ParameterName string CurrentValue interface{} ProposedValue interface{} AdjustmentRatio float64 Reason string ExpectedImpact string Risk string } // TuningDecision 调优决策 type TuningDecision struct { Timestamp time.Time Trigger string Adjustments []ParameterAdjustment Confidence float64 ExpectedImprovement float64 Risk float64 AutoExecute bool } // StrategyExecution 策略执行 type StrategyExecution struct { Timestamp time.Time Decision *TuningDecision Executed bool Result *ExecutionResult } // ExecutionResult 执行结果 type ExecutionResult struct { Success bool Error error PerformanceBefore float64 PerformanceAfter float64 Improvement float64 SideEffects []string } // TuningRecord 调优记录 type TuningRecord struct { Timestamp time.Time Type string // automatic, manual, rollback Parameters map[string]interface{} Reason string Result *TuningResult } // TuningResult 调优结果 type TuningResult struct { Success bool PerformanceGain float64 ResourceUsageChange float64 StabilityImpact float64 UserExperienceChange float64 Duration time.Duration } // LearningDataset 学习数据集 type LearningDataset struct { Features [][]float64 Labels []float64 Weights []float64 // 数据统计 FeatureStats []FeatureStatistics LabelStats LabelStatistics // 数据划分 TrainingSplit float64 ValidationSplit float64 TestSplit float64 mutex sync.RWMutex } // FeatureStatistics 特征统计 type FeatureStatistics struct { Name string Mean float64 Std float64 Min float64 Max float64 Correlation float64 } // LabelStatistics 标签统计 type LabelStatistics struct { Mean float64 Std float64 Min float64 Max float64 Distribution map[string]int } // TuningEngineStats 调优引擎统计 type TuningEngineStats struct { // 基础统计 TotalAdjustments int64 SuccessfulAdjustments int64 FailedAdjustments int64 RollbackCount int64 // 性能统计 AverageImprovement float64 MaxImprovement float64 TotalImprovement float64 // 学习统计 ModelAccuracy float64 PredictionAccuracy float64 LearningIterations int64 // 时间统计 AverageDecisionTime time.Duration TotalTuningTime time.Duration LastTuningTime time.Time // 系统影响 CPUOverhead float64 MemoryOverhead int64 mutex sync.RWMutex } // NewAdaptiveTuningEngine 创建自适应调优引擎 func NewAdaptiveTuningEngine() *AdaptiveTuningEngine { config := &AdaptiveTuningConfig{ TuningInterval: 5 * time.Minute, MetricInterval: 30 * time.Second, CPUUsageThreshold: 0.8, MemoryThreshold: 500 * 1024 * 1024, // 500MB LatencyThreshold: 10 * time.Second, LearningRate: 0.01, AdaptationSpeed: 0.1, StabilityFactor: 0.9, MinBatchInterval: 10 * time.Second, MaxBatchInterval: 10 * time.Minute, MinBatchSize: 10, MaxBatchSize: 1000, MaxAdjustmentRatio: 0.3, // 最大30%调整 RollbackThreshold: 0.1, // 性能下降10%触发回滚 PredictionWindow: 1 * time.Hour, ConfidenceThreshold: 0.7, } engine := &AdaptiveTuningEngine{ config: config, shutdownChan: make(chan struct{}), maxHistorySize: 1000, tuningHistory: make([]*TuningRecord, 0), stats: &TuningEngineStats{ LastTuningTime: time.Now(), }, } // 初始化组件 engine.metricCollector = NewMetricCollector() engine.performanceAnalyzer = NewPerformanceAnalyzer() engine.predictiveModel = NewPredictiveModel() engine.tuningStrategy = NewTuningStrategy() engine.learningData = NewLearningDataset() return engine } // Start 启动自适应调优引擎 func (a *AdaptiveTuningEngine) Start() error { if !atomic.CompareAndSwapInt32(&a.isRunning, 0, 1) { return fmt.Errorf("调优引擎已在运行中") } // 启动指标收集 if err := a.metricCollector.Start(a.config.MetricInterval); err != nil { return fmt.Errorf("启动指标收集失败: %v", err) } // 启动主调优循环 go a.tuningLoop() // 启动性能分析循环 go a.analysisLoop() // 启动模型训练循环 go a.learningLoop() fmt.Printf("🧠 [自适应调优引擎] 启动完成,调优间隔: %v\n", a.config.TuningInterval) return nil } // tuningLoop 调优循环 func (a *AdaptiveTuningEngine) tuningLoop() { ticker := time.NewTicker(a.config.TuningInterval) defer ticker.Stop() for { select { case <-ticker.C: a.performTuning() case <-a.shutdownChan: return } } } // analysisLoop 分析循环 func (a *AdaptiveTuningEngine) analysisLoop() { ticker := time.NewTicker(a.config.MetricInterval * 2) // 分析频率低于采集频率 defer ticker.Stop() for { select { case <-ticker.C: a.performAnalysis() case <-a.shutdownChan: return } } } // learningLoop 学习循环 func (a *AdaptiveTuningEngine) learningLoop() { ticker := time.NewTicker(15 * time.Minute) // 每15分钟学习一次 defer ticker.Stop() for { select { case <-ticker.C: a.performLearning() case <-a.shutdownChan: return } } } // performTuning 执行调优 func (a *AdaptiveTuningEngine) performTuning() { startTime := time.Now() // 获取当前指标 currentMetrics := a.metricCollector.GetLatestMetrics() if currentMetrics == nil { return } // 分析性能状态 performanceIssues := a.performanceAnalyzer.AnalyzeIssues(currentMetrics) // 生成调优决策 decision := a.tuningStrategy.GenerateDecision(currentMetrics, performanceIssues) if decision == nil { return } // 验证决策合理性 if !a.validateDecision(decision) { fmt.Printf("⚠️ [调优引擎] 决策验证失败,跳过执行\n") return } // 执行调优 result := a.executeDecision(decision) // 记录调优历史 record := &TuningRecord{ Timestamp: time.Now(), Type: "automatic", Parameters: a.extractParameters(decision), Reason: decision.Trigger, Result: result, } a.addTuningRecord(record) // 更新统计 a.updateTuningStats(result, time.Since(startTime)) if result.Success { fmt.Printf("✅ [调优引擎] 自动调优完成,性能提升: %.2f%%\n", result.PerformanceGain*100) } else { fmt.Printf("❌ [调优引擎] 调优失败,考虑回滚\n") a.considerRollback(decision, result) } } // performAnalysis 执行性能分析 func (a *AdaptiveTuningEngine) performAnalysis() { // 趋势分析 a.performanceAnalyzer.AnalyzeTrends(a.metricCollector.GetMetricsHistory(100)) // 异常检测 a.performanceAnalyzer.DetectAnomalies(a.metricCollector.GetLatestMetrics()) // 相关性分析 a.performanceAnalyzer.AnalyzeCorrelations(a.metricCollector.GetMetricsHistory(50)) } // performLearning 执行机器学习 func (a *AdaptiveTuningEngine) performLearning() { // 收集训练数据 a.collectTrainingData() // 训练预测模型 if err := a.predictiveModel.Train(a.learningData); err != nil { fmt.Printf("⚠️ [调优引擎] 模型训练失败: %v\n", err) return } // 验证模型性能 accuracy := a.predictiveModel.Validate() // 更新统计 a.mutex.Lock() a.stats.ModelAccuracy = accuracy a.stats.LearningIterations++ a.mutex.Unlock() fmt.Printf("🎓 [调优引擎] 模型训练完成,准确率: %.2f%%\n", accuracy*100) } // validateDecision 验证调优决策 func (a *AdaptiveTuningEngine) validateDecision(decision *TuningDecision) bool { // 检查置信度 if decision.Confidence < a.config.ConfidenceThreshold { return false } // 检查风险级别 if decision.Risk > 0.7 { // 风险过高 return false } // 检查调整幅度 for _, adj := range decision.Adjustments { if math.Abs(adj.AdjustmentRatio) > a.config.MaxAdjustmentRatio { return false } } return true } // executeDecision 执行调优决策 func (a *AdaptiveTuningEngine) executeDecision(decision *TuningDecision) *TuningResult { startTime := time.Now() // 获取执行前性能基线 beforeMetrics := a.metricCollector.GetLatestMetrics() performanceBefore := a.calculateOverallPerformance(beforeMetrics) // 执行参数调整 success := true for _, adjustment := range decision.Adjustments { if err := a.applyParameterAdjustment(adjustment); err != nil { success = false break } } if !success { return &TuningResult{ Success: false, PerformanceGain: 0, ResourceUsageChange: 0, StabilityImpact: 0, Duration: time.Since(startTime), } } // 等待一段时间观察效果 time.Sleep(30 * time.Second) // 获取执行后性能 afterMetrics := a.metricCollector.GetLatestMetrics() performanceAfter := a.calculateOverallPerformance(afterMetrics) performanceGain := (performanceAfter - performanceBefore) / performanceBefore // 计算资源使用变化 resourceBefore := float64(beforeMetrics.System.MemoryUsage + int64(beforeMetrics.System.CPUUsage*1000)) resourceAfter := float64(afterMetrics.System.MemoryUsage + int64(afterMetrics.System.CPUUsage*1000)) resourceChange := (resourceAfter - resourceBefore) / resourceBefore return &TuningResult{ Success: true, PerformanceGain: performanceGain, ResourceUsageChange: resourceChange, StabilityImpact: a.calculateStabilityImpact(beforeMetrics, afterMetrics), UserExperienceChange: performanceGain, // 简化假设 Duration: time.Since(startTime), } } // calculateOverallPerformance 计算整体性能分数 func (a *AdaptiveTuningEngine) calculateOverallPerformance(metrics *MetricSnapshot) float64 { if metrics == nil { return 0 } // 性能分数计算(0-100分) cpuScore := math.Max(0, (1.0-metrics.System.CPUUsage)*40) // CPU使用率越低越好,最高40分 memoryScore := math.Max(0, (1.0-float64(metrics.System.MemoryUsage)/float64(metrics.System.MemoryTotal))*30) // 内存使用率越低越好,最高30分 responseScore := math.Max(0, (1.0-math.Min(1.0, float64(metrics.Application.ResponseTime)/float64(time.Second)))*20) // 响应时间越短越好,最高20分 cacheScore := metrics.Cache.HitRate * 10 // 缓存命中率越高越好,最高10分 return cpuScore + memoryScore + responseScore + cacheScore } // calculateStabilityImpact 计算稳定性影响 func (a *AdaptiveTuningEngine) calculateStabilityImpact(before, after *MetricSnapshot) float64 { if before == nil || after == nil { return 0 } // 简化的稳定性计算:比较关键指标的变化 cpuVariation := math.Abs(after.System.CPUUsage - before.System.CPUUsage) memoryVariation := math.Abs(float64(after.System.MemoryUsage-before.System.MemoryUsage) / float64(before.System.MemoryUsage)) // 变化越小,稳定性越好 stabilityScore := 1.0 - (cpuVariation*0.5 + memoryVariation*0.5) return math.Max(0, stabilityScore) } // applyParameterAdjustment 应用参数调整 func (a *AdaptiveTuningEngine) applyParameterAdjustment(adjustment ParameterAdjustment) error { // 这里应该调用具体的参数设置函数 // 暂时模拟实现 fmt.Printf("🔧 [调优引擎] 调整参数 %s: %v -> %v (%.1f%%)\n", adjustment.ParameterName, adjustment.CurrentValue, adjustment.ProposedValue, adjustment.AdjustmentRatio*100) return nil } // collectTrainingData 收集训练数据 func (a *AdaptiveTuningEngine) collectTrainingData() { history := a.metricCollector.GetMetricsHistory(200) _ = a.getTuningHistory(50) // 暂时不使用调优历史 // 构建特征和标签 for i, metrics := range history { if i < len(history)-1 { // 特征:当前指标 features := []float64{ metrics.System.CPUUsage, float64(metrics.System.MemoryUsage) / 1024 / 1024, // MB float64(metrics.Application.ResponseTime) / float64(time.Millisecond), metrics.Cache.HitRate, metrics.Cache.CompressionRatio, } // 标签:下一时刻的整体性能 nextMetrics := history[i+1] label := a.calculateOverallPerformance(&nextMetrics) // 添加到学习数据集 a.learningData.mutex.Lock() a.learningData.Features = append(a.learningData.Features, features) a.learningData.Labels = append(a.learningData.Labels, label) a.learningData.Weights = append(a.learningData.Weights, 1.0) a.learningData.mutex.Unlock() } } // 限制数据集大小 a.learningData.mutex.Lock() maxSize := 1000 if len(a.learningData.Features) > maxSize { excess := len(a.learningData.Features) - maxSize a.learningData.Features = a.learningData.Features[excess:] a.learningData.Labels = a.learningData.Labels[excess:] a.learningData.Weights = a.learningData.Weights[excess:] } a.learningData.mutex.Unlock() } // considerRollback 考虑回滚 func (a *AdaptiveTuningEngine) considerRollback(decision *TuningDecision, result *TuningResult) { if result.PerformanceGain < -a.config.RollbackThreshold { fmt.Printf("🔄 [调优引擎] 触发自动回滚,性能下降: %.2f%%\n", result.PerformanceGain*100) a.performRollback(decision) } } // performRollback 执行回滚 func (a *AdaptiveTuningEngine) performRollback(originalDecision *TuningDecision) { // 创建回滚决策 rollbackDecision := &TuningDecision{ Timestamp: time.Now(), Trigger: "automatic_rollback", Adjustments: make([]ParameterAdjustment, 0), Confidence: 1.0, AutoExecute: true, } // 反向调整所有参数 for _, adjustment := range originalDecision.Adjustments { rollbackAdjustment := ParameterAdjustment{ ParameterName: adjustment.ParameterName, CurrentValue: adjustment.ProposedValue, ProposedValue: adjustment.CurrentValue, AdjustmentRatio: -adjustment.AdjustmentRatio, Reason: "rollback", ExpectedImpact: "restore_stability", Risk: "low", } rollbackDecision.Adjustments = append(rollbackDecision.Adjustments, rollbackAdjustment) } // 执行回滚 result := a.executeDecision(rollbackDecision) // 记录回滚 record := &TuningRecord{ Timestamp: time.Now(), Type: "rollback", Parameters: a.extractParameters(rollbackDecision), Reason: "performance_degradation", Result: result, } a.addTuningRecord(record) // 更新统计 atomic.AddInt64(&a.stats.RollbackCount, 1) } // addTuningRecord 添加调优记录 func (a *AdaptiveTuningEngine) addTuningRecord(record *TuningRecord) { a.historyMutex.Lock() defer a.historyMutex.Unlock() a.tuningHistory = append(a.tuningHistory, record) // 限制历史记录大小 if len(a.tuningHistory) > a.maxHistorySize { a.tuningHistory = a.tuningHistory[1:] } } // updateTuningStats 更新调优统计 func (a *AdaptiveTuningEngine) updateTuningStats(result *TuningResult, decisionTime time.Duration) { a.stats.mutex.Lock() defer a.stats.mutex.Unlock() a.stats.TotalAdjustments++ if result.Success { a.stats.SuccessfulAdjustments++ a.stats.TotalImprovement += result.PerformanceGain a.stats.AverageImprovement = a.stats.TotalImprovement / float64(a.stats.SuccessfulAdjustments) if result.PerformanceGain > a.stats.MaxImprovement { a.stats.MaxImprovement = result.PerformanceGain } } else { a.stats.FailedAdjustments++ } // 更新时间统计 a.stats.TotalTuningTime += decisionTime a.stats.AverageDecisionTime = time.Duration(int64(a.stats.TotalTuningTime) / a.stats.TotalAdjustments) a.stats.LastTuningTime = time.Now() } // extractParameters 提取决策参数 func (a *AdaptiveTuningEngine) extractParameters(decision *TuningDecision) map[string]interface{} { params := make(map[string]interface{}) for _, adj := range decision.Adjustments { params[adj.ParameterName] = adj.ProposedValue } return params } // getTuningHistory 获取调优历史 func (a *AdaptiveTuningEngine) getTuningHistory(limit int) []*TuningRecord { a.historyMutex.RLock() defer a.historyMutex.RUnlock() if limit <= 0 || limit > len(a.tuningHistory) { limit = len(a.tuningHistory) } history := make([]*TuningRecord, limit) startIndex := len(a.tuningHistory) - limit copy(history, a.tuningHistory[startIndex:]) return history } // Stop 停止自适应调优引擎 func (a *AdaptiveTuningEngine) Stop() error { if !atomic.CompareAndSwapInt32(&a.isRunning, 1, 0) { return nil } // 停止指标收集 a.metricCollector.Stop() // 停止所有循环 close(a.shutdownChan) fmt.Printf("🧠 [自适应调优引擎] 已停止\n") return nil } // GetStats 获取调优引擎统计 func (a *AdaptiveTuningEngine) GetStats() *TuningEngineStats { a.stats.mutex.RLock() defer a.stats.mutex.RUnlock() statsCopy := *a.stats return &statsCopy } // GetTuningReport 获取调优报告 func (a *AdaptiveTuningEngine) GetTuningReport() map[string]interface{} { stats := a.GetStats() recentHistory := a.getTuningHistory(10) return map[string]interface{}{ "engine_stats": stats, "recent_history": recentHistory, "current_trends": a.performanceAnalyzer.GetCurrentTrends(), "anomalies": a.performanceAnalyzer.GetDetectedAnomalies(), "predictions": a.predictiveModel.GetPredictions(), "model_accuracy": a.predictiveModel.GetAccuracy(), } }