feat: rag pipeline backend

This commit is contained in:
WangCham
2025-07-17 15:05:11 +08:00
parent 4cbbe9e000
commit 45afdbdfbb
4 changed files with 48 additions and 3 deletions

View File

@@ -20,7 +20,7 @@ class LegacyPipeline(Base):
)
for_version = sqlalchemy.Column(sqlalchemy.String(255), nullable=False)
is_default = sqlalchemy.Column(sqlalchemy.Boolean, nullable=False, default=False)
knowledge_base_uuid = sqlalchemy.Column(sqlalchemy.String(255), nullable=True)
stages = sqlalchemy.Column(sqlalchemy.JSON, nullable=False)
config = sqlalchemy.Column(sqlalchemy.JSON, nullable=False)
@@ -43,3 +43,4 @@ class PipelineRunRecord(Base):
started_at = sqlalchemy.Column(sqlalchemy.DateTime, nullable=False)
finished_at = sqlalchemy.Column(sqlalchemy.DateTime, nullable=False)
result = sqlalchemy.Column(sqlalchemy.JSON, nullable=False)
knowledge_base_uuid = sqlalchemy.Column(sqlalchemy.String(255), nullable=True)

View File

@@ -2,7 +2,7 @@ from __future__ import annotations
import json
import typing
from ...platform.types import message as platform_entities
from .. import runner
from ...core import entities as core_entities
from .. import entities as llm_entities
@@ -15,9 +15,44 @@ class LocalAgentRunner(runner.RequestRunner):
async def run(self, query: core_entities.Query) -> typing.AsyncGenerator[llm_entities.Message, None]:
"""运行请求"""
pending_tool_calls = []
req_messages = query.prompt.messages.copy() + query.messages.copy() + [query.user_message]
pipeline_uuid = query.pipeline_uuid
pipeline = await self.ap.pipeline_mgr.get_pipeline_by_uuid(pipeline_uuid)
try:
if pipeline and pipeline.pipeline_entity.knowledge_base_uuid is not None:
kb_id = pipeline.pipeline_entity.knowledge_base_uuid
kb= await self.ap.rag_mgr.load_knowledge_base(kb_id)
except Exception as e:
self.ap.logger.error(f'Failed to load knowledge base {kb_id}: {e}')
kb_id = None
if kb:
message = ''
for msg in query.message_chain:
if isinstance(msg, platform_entities.Plain):
message += msg.text
result = await kb.retrieve(message)
if result:
rag_context = "\n\n".join(
f"[{i+1}] {entry.metadata.get('text', '')}" for i, entry in enumerate(result)
)
rag_message = llm_entities.Message(
role="user",
content="The following are relevant context entries retrieved from the knowledge base. "
"Please use them to answer the user's question. "
"Respond in the same language as the user's input.\n\n" + rag_context
)
req_messages += [rag_message]
# 首次请求
msg = await query.use_llm_model.requester.invoke_llm(
query,

View File

@@ -44,7 +44,8 @@
"role": "system",
"content": "You are a helpful assistant."
}
]
],
"knowledge-base": ""
},
"dify-service-api": {
"base-url": "https://api.dify.ai/v1",

View File

@@ -68,6 +68,13 @@ stages:
zh_Hans: 除非您了解消息结构,否则请只使用 system 单提示词
type: prompt-editor
required: true
- name: knowledge-base
label:
en_US: Knowledge Base
zh_Hans: 知识库
type: knowledge-base-selector
required: false
default: ''
- name: dify-service-api
label:
en_US: Dify Service API
@@ -298,3 +305,4 @@ stages:
type: string
required: false
default: 'response'