Compare commits

...

52 Commits

Author SHA1 Message Date
RockChinQ
b0cca0a4c2 Release v2.5.1 2023-07-31 18:12:59 +08:00
Junyan Qin
a2bda85a9c Merge pull request #523 from RockChinQ/feat-prompt-preprocess-event
[Feat] 新增PromptPreprocessing事件
2023-07-31 17:55:06 +08:00
RockChinQ
20677cff86 doc(wiki): 插件开发页增加版本断言说明 2023-07-31 17:53:33 +08:00
RockChinQ
c8af5d8445 feat: 添加版本断言函数require_ver 2023-07-31 17:46:30 +08:00
RockChinQ
2dbe984539 doc(wiki): 添加事件wiki说明 2023-07-31 17:27:28 +08:00
RockChinQ
6b8fa664f1 feat: 新增PromptPreprocessing事件 2023-07-31 17:21:09 +08:00
RockChinQ
2b9612e933 chore: 提交部分测试文件 2023-07-31 16:24:39 +08:00
RockChinQ
749d0219fb chore: 删除弃用模块 2023-07-31 16:23:31 +08:00
Junyan Qin
a11a152bd7 ci: 解决sync-wiki.yml异常退出问题 2023-07-31 15:41:37 +08:00
Junyan Qin
fc803a3742 Merge pull request #522 from RockChinQ/feat-generating-stop-case
[Feat] 新增!continue命令
2023-07-31 15:34:30 +08:00
GitHub Actions Bot
13a1e15f24 Update cmdpriv-template.json 2023-07-31 07:24:14 +00:00
RockChinQ
3f41b94da5 feat: 完善命令文档 2023-07-31 15:23:42 +08:00
RockChinQ
0fb5bfda20 ci: 添加tiktoken依赖 2023-07-31 15:20:23 +08:00
RockChinQ
dc1fd73ebb feat: 添加continue命令 2023-07-31 15:17:49 +08:00
Junyan Qin
161b694f71 Merge pull request #521 from RockChinQ/fix-usage-not-reported
[Fix] text的使用量未上报
2023-07-31 14:31:48 +08:00
RockChinQ
45d1c89e45 fix: text的使用量未上报 2023-07-31 14:28:48 +08:00
Junyan Qin
e26664aa51 Merge pull request #520 from RockChinQ/feat-accurately-calculate-tokens
feat: 使用tiktoken计算tokens数
2023-07-31 12:16:10 +08:00
RockChinQ
e29691efbd feat: 使用tiktoken计算tokens数 2023-07-31 11:59:22 +08:00
RockChinQ
6d45327882 debug: 接口底层添加返回数据debug信息 2023-07-31 10:37:45 +08:00
RockChinQ
fbd41eef49 chore: 删除devcontainer.json 2023-07-31 10:37:14 +08:00
Junyan Qin
0a30c88322 doc(README.md): 插件列表 2023-07-31 00:07:39 +08:00
Junyan Qin
4f5af0e8c8 Merge pull request #518 from RockChinQ/fix-cannot-disable-funcs-dynamically
[Fix] plugin启用禁用命令对内容函数不生效
2023-07-30 23:56:01 +08:00
RockChinQ
df3f0fd159 fix: plugin启用禁用命令对内容函数不生效 2023-07-30 23:54:56 +08:00
RockChinQ
f2493c79dd doc(wiki): 添加联网内容函数提问示例 2023-07-29 19:34:47 +08:00
RockChinQ
a86a035b6b doc: 更新README.md 2023-07-29 19:26:28 +08:00
RockChinQ
7995793bfd doc(wiki): 添加内容函数页 2023-07-29 19:24:56 +08:00
RockChinQ
a56b340646 Release v2.5.0 2023-07-29 18:59:25 +08:00
Junyan Qin
7473cdfe16 Merge pull request #513 from RockChinQ/feat-function-calling-integration
[Feat] 支持GPT的函数调用功能
2023-07-29 18:57:29 +08:00
RockChinQ
24273ac158 doc: README添加内容函数相关内容 2023-07-29 18:55:18 +08:00
RockChinQ
fe6275000e doc(wiki): 更新wiki插件页 2023-07-29 18:40:49 +08:00
RockChinQ
5fbf369f82 doc(wiki): 更新插件页 2023-07-29 18:37:03 +08:00
Junyan Qin
4400475ffa chore: 添加Webwlkr插件示例 2023-07-29 17:41:56 +08:00
GitHub Actions Bot
796eb7c95d Update cmdpriv-template.json 2023-07-29 09:30:22 +00:00
RockChinQ
89a01378e7 ci: 跑工作流 2023-07-29 17:29:52 +08:00
RockChinQ
f4735e5e30 ci(cmd_priv): 添加CallingGPT依赖 2023-07-29 17:28:11 +08:00
RockChinQ
f1bb3045aa feat: 添加func命令 2023-07-29 17:26:07 +08:00
RockChinQ
96e474a555 feat: 插件开关对其内容函数生效 2023-07-29 17:10:47 +08:00
RockChinQ
833d29b101 typo: enable->enabled 2023-07-29 16:55:01 +08:00
RockChinQ
dce6734ba2 feat: 改为推荐使用func()装饰器注册内容函数 2023-07-29 16:51:19 +08:00
RockChinQ
0481167dc6 feat: 改为在start流程设置openai.proxy 2023-07-29 16:36:31 +08:00
RockChinQ
a002f93f7b chore: 删除过时代码 2023-07-29 16:30:09 +08:00
RockChinQ
3c894fe70e feat: chat_completion的函数开关支持 2023-07-29 16:29:16 +08:00
RockChinQ
8c69b8a1d9 feat: 内容函数全局开关支持 2023-07-29 16:28:18 +08:00
Junyan Qin
a9dae05303 doc(README.md): 修改社区群群号 2023-07-29 13:31:58 +08:00
RockChinQ
ae6994e241 feat(contentPlugin): 完成基本的内容函数调用功能 2023-07-28 19:03:02 +08:00
Rock Chin
caa72fa40c feat: 在插件层面初步支持内容函数 2023-07-27 14:27:36 +08:00
Junyan Qin
46cc9220c3 Merge pull request #506 from RockChinQ/perf-persist-dprompt-when-auto-reset
[Perf] 在session自动重置时保留非default的prompt
2023-07-07 17:53:29 +08:00
Rock Chin
ddb56d7a8e fix: reset命令错误的逻辑 2023-07-07 17:49:43 +08:00
Rock Chin
a0267416d7 fix: 修复reset逻辑导致的无法初始化情景预设问题 2023-07-07 16:37:05 +08:00
Rock Chin
56e1ef3602 fix: 修复reset可能引起的bug 2023-07-07 16:35:37 +08:00
Rock Chin
b4fc1057d1 perf: 在session自动重置时保留非default的prompt (#494) 2023-07-06 23:09:39 +08:00
Rock Chin
06037df607 ci: 仅在master分支运行sync-wiki工作流 2023-06-20 22:42:18 +08:00
34 changed files with 1327 additions and 323 deletions

View File

@@ -1,34 +0,0 @@
// For format details, see https://aka.ms/devcontainer.json. For config options, see the
// README at: https://github.com/devcontainers/templates/tree/main/src/python
{
"name": "QChatGPT 3.10",
// Or use a Dockerfile or Docker Compose file. More info: https://containers.dev/guide/dockerfile
"image": "mcr.microsoft.com/devcontainers/python:0-3.10",
// Features to add to the dev container. More info: https://containers.dev/features.
// "features": {},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [],
// Use 'postCreateCommand' to run commands after the container is created.
// "postCreateCommand": "pip3 install --user -r requirements.txt",
// Configure tool-specific properties.
// "customizations": {},
"customizations": {
"codespaces": {
"repositories": {
"RockChinQ/QChatGPT": {
"permissions": "write-all"
},
"RockChinQ/revLibs": {
"permissions": "write-all"
}
}
}
}
// Uncomment to connect as root instead. More info: https://aka.ms/dev-containers-non-root.
// "remoteUser": "root"
}

View File

@@ -1,7 +1,14 @@
name: Update Wiki
on:
pull_request:
branches:
- master
paths:
- 'res/wiki/**'
push:
branches:
- master
paths:
- 'res/wiki/**'
@@ -23,11 +30,16 @@ jobs:
- name: Copy res/wiki content to wiki
run: |
cp -r res/wiki/* wiki/
- name: Check for changes
run: |
cd wiki
if git diff --quiet; then
echo "No changes to commit."
exit 0
fi
- name: Commit and Push Changes
run: |
cd wiki
if git diff --name-only; then
git add .
git commit -m "Update wiki"
git push
fi
git add .
git commit -m "Update wiki"
git push

View File

@@ -26,7 +26,7 @@ jobs:
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install --upgrade yiri-mirai openai colorlog func_timeout dulwich Pillow
python -m pip install --upgrade yiri-mirai openai colorlog func_timeout dulwich Pillow CallingGPT tiktoken
- name: Copy Scripts
run: |

View File

@@ -10,6 +10,7 @@
![Wakapi Count](https://wakapi.dev/api/badge/RockChinQ/interval:any/project:QChatGPT)
> 2023/7/29 支持使用GPT的Function Calling功能实现类似ChatGPT Plugin的效果请见[Wiki内容函数](https://github.com/RockChinQ/QChatGPT/wiki/%E6%8F%92%E4%BB%B6%E4%BD%BF%E7%94%A8-%E5%86%85%E5%AE%B9%E5%87%BD%E6%95%B0)
> 2023/4/24 支持使用go-cqhttp登录QQ请查看[此文档](https://github.com/RockChinQ/QChatGPT/wiki/go-cqhttp%E9%85%8D%E7%BD%AE)
> 2023/3/18 现已支持GPT-4 API内测请查看`config-template.py`中的`completion_api_params`
> 2023/3/15 逆向库已支持New Bing使用方法查看[插件文档](https://github.com/RockChinQ/revLibs)
@@ -19,7 +20,7 @@
- 到[项目Wiki](https://github.com/RockChinQ/QChatGPT/wiki)可了解项目详细信息
- 官方交流、答疑群: 656285629
- **进群提问前请您`确保`已经找遍文档和issue均无法解决**
- 社区群(内有一键部署包、图形化界面等资源): 362515018
- 社区群(内有一键部署包、图形化界面等资源): 891448839
- QQ频道机器人见[QQChannelChatGPT](https://github.com/Soulter/QQChannelChatGPT)
- 欢迎各种形式的贡献,请查看[贡献指引](CONTRIBUTING.md)
- 购买ChatGPT账号: [此链接](http://fk.kimi.asia)
@@ -111,6 +112,7 @@
<summary>✅支持插件加载🧩</summary>
- 自行实现插件加载器及相关支持
- 支持GPT的Function Calling功能
- 详细查看[插件使用页](https://github.com/RockChinQ/QChatGPT/wiki/%E6%8F%92%E4%BB%B6%E4%BD%BF%E7%94%A8)
</details>
<details>
@@ -240,7 +242,7 @@ cd QChatGPT
2. 安装依赖
```bash
pip3 install requests yiri-mirai openai colorlog func_timeout dulwich Pillow nakuru-project-idk
pip3 install requests yiri-mirai openai colorlog func_timeout dulwich Pillow nakuru-project-idk CallingGPT tiktoken
```
3. 运行一次主程序,生成配置文件
@@ -280,21 +282,16 @@ python3 main.py
详见[Wiki插件使用页](https://github.com/RockChinQ/QChatGPT/wiki/%E6%8F%92%E4%BB%B6%E4%BD%BF%E7%94%A8)
开发教程见[Wiki插件开发页](https://github.com/RockChinQ/QChatGPT/wiki/%E6%8F%92%E4%BB%B6%E5%BC%80%E5%8F%91)
⭐我们已经支持了[GPT的Function Calling能力](https://platform.openai.com/docs/guides/gpt/function-calling),请查看[Wiki内容函数](https://github.com/RockChinQ/QChatGPT/wiki/%E6%8F%92%E4%BB%B6%E4%BD%BF%E7%94%A8-%E5%86%85%E5%AE%B9%E5%87%BD%E6%95%B0)
<details>
<summary>查看插件列表</summary>
### 示例插件
[所有插件列表](https://github.com/stars/RockChinQ/lists/qchatgpt-%E6%8F%92%E4%BB%B6)欢迎提出issue以提交新的插件
`tests/plugin_examples`目录下,将其整个目录复制到`plugins`目录下即可使用
- `cmdcn` - 主程序指令中文形式
- `hello_plugin` - 在收到消息`hello`时回复相应消息
- `urlikethisijustsix` - 收到冒犯性消息时回复相应消息
### 更多
[插件列表](https://github.com/stars/RockChinQ/lists/qchatgpt-%E6%8F%92%E4%BB%B6)欢迎提出issue以提交新的插件
### 部分插件
- [WebwlkrPlugin](https://github.com/RockChinQ/WebwlkrPlugin) - 让机器人能联网!!
- [revLibs](https://github.com/RockChinQ/revLibs) - 将ChatGPT网页版接入此项目关于[官方接口和网页版有什么区别](https://github.com/RockChinQ/QChatGPT/wiki/%E5%AE%98%E6%96%B9%E6%8E%A5%E5%8F%A3%E3%80%81ChatGPT%E7%BD%91%E9%A1%B5%E7%89%88%E3%80%81ChatGPT-API%E5%8C%BA%E5%88%AB)
- [Switcher](https://github.com/RockChinQ/Switcher) - 支持通过指令切换使用的模型
- [hello_plugin](https://github.com/RockChinQ/hello_plugin) - `hello_plugin` 的储存库形式,插件开发模板

View File

@@ -47,7 +47,7 @@ def init_db():
def ensure_dependencies():
import pkg.utils.pkgmgr as pkgmgr
pkgmgr.run_pip(["install", "openai", "Pillow", "nakuru-project-idk", "--upgrade",
pkgmgr.run_pip(["install", "openai", "Pillow", "nakuru-project-idk", "CallingGPT", "tiktoken", "--upgrade",
"-i", "https://pypi.tuna.tsinghua.edu.cn/simple",
"--trusted-host", "pypi.tuna.tsinghua.edu.cn"])
@@ -178,9 +178,14 @@ def start(first_time_init=False):
logging.error(e)
traceback.print_exc()
# 配置OpenAI proxy
import openai
openai.proxy = None # 先重置因为重载后可能需要清除proxy
if "http_proxy" in config.openai_config and config.openai_config["http_proxy"] is not None:
openai.proxy = config.openai_config["http_proxy"]
# 配置openai api_base
if "reverse_proxy" in config.openai_config and config.openai_config["reverse_proxy"] is not None:
import openai
openai.api_base = config.openai_config["reverse_proxy"]
# 主启动流程

View File

View File

@@ -0,0 +1,200 @@
import openai
import json
import logging
from .model import RequestBase
from ..funcmgr import get_func_schema_list, execute_function, get_func, get_func_schema, ContentFunctionNotFoundError
class ChatCompletionRequest(RequestBase):
"""调用ChatCompletion接口的请求类。
此类保证每一次返回的角色为assistant的信息的finish_reason一定为stop。
若有函数调用响应,本类的返回瀑布是:函数调用请求->函数调用结果->...->assistant的信息->stop。
"""
model: str
messages: list[dict[str, str]]
kwargs: dict
stopped: bool = False
pending_func_call: dict = None
pending_msg: str
def flush_pending_msg(self):
self.append_message(
role="assistant",
content=self.pending_msg
)
self.pending_msg = ""
def append_message(self, role: str, content: str, name: str=None):
msg = {
"role": role,
"content": content
}
if name is not None:
msg['name'] = name
self.messages.append(msg)
def __init__(
self,
model: str,
messages: list[dict[str, str]],
**kwargs
):
self.model = model
self.messages = messages.copy()
self.kwargs = kwargs
self.req_func = openai.ChatCompletion.acreate
self.pending_func_call = None
self.stopped = False
self.pending_msg = ""
def __iter__(self):
return self
def __next__(self) -> dict:
if self.stopped:
raise StopIteration()
if self.pending_func_call is None: # 没有待处理的函数调用请求
args = {
"model": self.model,
"messages": self.messages,
}
funcs = get_func_schema_list()
if len(funcs) > 0:
args['functions'] = funcs
# 拼接kwargs
args = {**args, **self.kwargs}
resp = self._req(**args)
choice0 = resp["choices"][0]
# 如果不是函数调用且finish_reason为stop则停止迭代
if 'function_call' not in choice0['message'] and choice0["finish_reason"] == "stop":
self.stopped = True
if 'function_call' in choice0['message']:
self.pending_func_call = choice0['message']['function_call']
# self.append_message(
# role="assistant",
# content="function call: "+json.dumps(self.pending_func_call, ensure_ascii=False)
# )
return {
"id": resp["id"],
"choices": [
{
"index": choice0["index"],
"message": {
"role": "assistant",
"type": "function_call",
"content": None,
"function_call": choice0['message']['function_call']
},
"finish_reason": "function_call"
}
],
"usage": resp["usage"]
}
else:
# self.pending_msg += choice0['message']['content']
# 普通回复一定处于最后方故不用再追加进内部messages
return {
"id": resp["id"],
"choices": [
{
"index": choice0["index"],
"message": {
"role": "assistant",
"type": "text",
"content": choice0['message']['content']
},
"finish_reason": "stop"
}
],
"usage": resp["usage"]
}
else: # 处理函数调用请求
cp_pending_func_call = self.pending_func_call.copy()
self.pending_func_call = None
func_name = cp_pending_func_call['name']
arguments = {}
try:
try:
arguments = json.loads(cp_pending_func_call['arguments'])
# 若不是json格式的异常处理
except json.decoder.JSONDecodeError:
# 获取函数的参数列表
func_schema = get_func_schema(func_name)
arguments = {
func_schema['parameters']['required'][0]: cp_pending_func_call['arguments']
}
logging.info("执行函数调用: name={}, arguments={}".format(func_name, arguments))
# 执行函数调用
ret = ""
try:
ret = execute_function(func_name, arguments)
logging.info("函数执行完成。")
except Exception as e:
ret = "error: execute function failed: {}".format(str(e))
logging.error("函数执行失败: {}".format(str(e)))
self.append_message(
role="function",
content=json.dumps(ret, ensure_ascii=False),
name=func_name
)
return {
"id": -1,
"choices": [
{
"index": -1,
"message": {
"role": "function",
"type": "function_return",
"function_name": func_name,
"content": json.dumps(ret, ensure_ascii=False)
},
"finish_reason": "function_return"
}
],
"usage": {
"prompt_tokens": 0,
"completion_tokens": 0,
"total_tokens": 0
}
}
except ContentFunctionNotFoundError:
raise Exception("没有找到函数: {}".format(func_name))

View File

@@ -0,0 +1,111 @@
import openai
from .model import RequestBase
class CompletionRequest(RequestBase):
"""调用Completion接口的请求类。
调用方可以一直next completion直到finish_reason为stop。
"""
model: str
prompt: str
kwargs: dict
stopped: bool = False
def __init__(
self,
model: str,
messages: list[dict[str, str]],
**kwargs
):
self.model = model
self.prompt = ""
for message in messages:
self.prompt += message["role"] + ": " + message["content"] + "\n"
self.prompt += "assistant: "
self.kwargs = kwargs
self.req_func = openai.Completion.acreate
def __iter__(self):
return self
def __next__(self) -> dict:
"""调用Completion接口返回生成的文本
{
"id": "id",
"choices": [
{
"index": 0,
"message": {
"role": "assistant",
"type": "text",
"content": "message"
},
"finish_reason": "reason"
}
],
"usage": {
"prompt_tokens": 10,
"completion_tokens": 20,
"total_tokens": 30
}
}
"""
if self.stopped:
raise StopIteration()
resp = self._req(
model=self.model,
prompt=self.prompt,
**self.kwargs
)
if resp["choices"][0]["finish_reason"] == "stop":
self.stopped = True
choice0 = resp["choices"][0]
self.prompt += choice0["text"]
return {
"id": resp["id"],
"choices": [
{
"index": choice0["index"],
"message": {
"role": "assistant",
"type": "text",
"content": choice0["text"]
},
"finish_reason": choice0["finish_reason"]
}
],
"usage": resp["usage"]
}
if __name__ == "__main__":
import os
openai.api_key = os.environ["OPENAI_API_KEY"]
for resp in CompletionRequest(
model="text-davinci-003",
messages=[
{
"role": "user",
"content": "Hello, who are you?"
}
]
):
print(resp)
if resp["choices"][0]["finish_reason"] == "stop":
break

51
pkg/openai/api/model.py Normal file
View File

@@ -0,0 +1,51 @@
# 定义不同接口请求的模型
import threading
import asyncio
import logging
import openai
class RequestBase:
req_func: callable
def __init__(self, *args, **kwargs):
raise NotImplementedError
def _req(self, **kwargs):
"""处理代理问题"""
ret: dict = {}
exception: Exception = None
async def awrapper(**kwargs):
nonlocal ret, exception
try:
ret = await self.req_func(**kwargs)
logging.debug("接口请求返回:%s", str(ret))
return ret
except Exception as e:
exception = e
loop = asyncio.new_event_loop()
thr = threading.Thread(
target=loop.run_until_complete,
args=(awrapper(**kwargs),)
)
thr.start()
thr.join()
if exception is not None:
raise exception
return ret
def __iter__(self):
raise self
def __next__(self):
raise NotImplementedError

47
pkg/openai/funcmgr.py Normal file
View File

@@ -0,0 +1,47 @@
# 封装了function calling的一些支持函数
import logging
from pkg.plugin import host
class ContentFunctionNotFoundError(Exception):
pass
def get_func_schema_list() -> list:
"""从plugin包中的函数结构中获取并处理成受GPT支持的格式"""
if not host.__enable_content_functions__:
return []
schemas = []
for func in host.__callable_functions__:
if func['enabled']:
fun_cp = func.copy()
del fun_cp['enabled']
schemas.append(fun_cp)
return schemas
def get_func(name: str) -> callable:
if name not in host.__function_inst_map__:
raise ContentFunctionNotFoundError("没有找到内容函数: {}".format(name))
return host.__function_inst_map__[name]
def get_func_schema(name: str) -> dict:
for func in host.__callable_functions__:
if func['name'] == name:
return func
raise ContentFunctionNotFoundError("没有找到内容函数: {}".format(name))
def execute_function(name: str, kwargs: dict) -> any:
"""执行函数调用"""
logging.debug("executing function: name='{}', kwargs={}".format(name, kwargs))
func = get_func(name)
return func(**kwargs)

View File

@@ -5,7 +5,9 @@ import openai
import pkg.openai.keymgr
import pkg.utils.context
import pkg.audit.gatherer
from pkg.openai.modelmgr import ModelRequest, create_openai_model_request
from pkg.openai.modelmgr import select_request_cls
from pkg.openai.api.model import RequestBase
class OpenAIInteract:
@@ -33,45 +35,31 @@ class OpenAIInteract:
pkg.utils.context.set_openai_manager(self)
# 请求OpenAI Completion
def request_completion(self, prompts) -> tuple[str, int]:
"""请求补全接口回复
Parameters:
prompts (str): 提示语
Returns:
str: 回复
def request_completion(self, messages: list):
"""请求补全接口回复=
"""
# 选择接口请求类
config = pkg.utils.context.get_config()
# 根据模型选择使用的接口
ai: ModelRequest = create_openai_model_request(
config.completion_api_params['model'],
'user',
config.openai_config["http_proxy"] if "http_proxy" in config.openai_config else None
)
ai.request(
prompts,
**config.completion_api_params
)
response = ai.get_response()
request: RequestBase
logging.debug("OpenAI response: %s", response)
model: str = config.completion_api_params['model']
# 记录使用量
current_round_token = 0
if 'model' in config.completion_api_params:
self.audit_mgr.report_text_model_usage(config.completion_api_params['model'],
ai.get_total_tokens())
current_round_token = ai.get_total_tokens()
elif 'engine' in config.completion_api_params:
self.audit_mgr.report_text_model_usage(config.completion_api_params['engine'],
response['usage']['total_tokens'])
current_round_token = response['usage']['total_tokens']
cp_parmas = config.completion_api_params.copy()
del cp_parmas['model']
return ai.get_message(), current_round_token
request = select_request_cls(model, messages, cp_parmas)
# 请求接口
for resp in request:
if resp['usage']['total_tokens'] > 0:
self.audit_mgr.report_text_model_usage(
model,
resp['usage']['total_tokens']
)
yield resp
def request_image(self, prompt) -> dict:
"""请求图片接口回复

View File

@@ -7,6 +7,11 @@ Completion - text-davinci-003 等模型
"""
import openai, logging, threading, asyncio
import openai.error as aiE
import tiktoken
from pkg.openai.api.model import RequestBase
from pkg.openai.api.completion import CompletionRequest
from pkg.openai.api.chat_completion import ChatCompletionRequest
COMPLETION_MODELS = {
'text-davinci-003',
@@ -39,153 +44,76 @@ IMAGE_MODELS = {
}
class ModelRequest:
"""模型接口请求父类"""
can_chat = False
runtime: threading.Thread = None
ret = {}
proxy: str = None
request_ready = True
error_info: str = "若在没有任何错误的情况下看到这句话请带着配置文件上报Issues"
def __init__(self, model_name, user_name, request_fun, http_proxy:str = None, time_out = None):
self.model_name = model_name
self.user_name = user_name
self.request_fun = request_fun
self.time_out = time_out
if http_proxy != None:
self.proxy = http_proxy
openai.proxy = self.proxy
self.request_ready = False
async def __a_request__(self, **kwargs):
"""异步请求"""
try:
self.ret: dict = await self.request_fun(**kwargs)
self.request_ready = True
except aiE.APIConnectionError as e:
self.error_info = "{}\n请检查网络连接或代理是否正常".format(e)
raise ConnectionError(self.error_info)
except ValueError as e:
self.error_info = "{}\n该错误可能是由于http_proxy格式设置错误引起的"
except Exception as e:
self.error_info = "{}\n由于请求异常产生的未知错误,请查看日志".format(e)
raise type(e)(self.error_info)
def request(self, **kwargs):
"""向接口发起请求"""
if self.proxy != None: #异步请求
self.request_ready = False
loop = asyncio.new_event_loop()
self.runtime = threading.Thread(
target=loop.run_until_complete,
args=(self.__a_request__(**kwargs),)
)
self.runtime.start()
else: #同步请求
self.ret = self.request_fun(**kwargs)
def __msg_handle__(self, msg):
"""将prompt dict转换成接口需要的格式"""
return msg
def ret_handle(self):
'''
API消息返回处理函数
若重写该方法应检查异步线程状态或在需要检查处super该方法
'''
if self.runtime != None and isinstance(self.runtime, threading.Thread):
self.runtime.join(self.time_out)
if self.request_ready:
return
raise Exception(self.error_info)
def get_total_tokens(self):
try:
return self.ret['usage']['total_tokens']
except:
return 0
def get_message(self):
return self.message
def get_response(self):
return self.ret
class ChatCompletionModel(ModelRequest):
"""ChatCompletion接口的请求实现"""
Chat_role = ['system', 'user', 'assistant']
def __init__(self, model_name, user_name, http_proxy:str = None, **kwargs):
if http_proxy == None:
request_fun = openai.ChatCompletion.create
else:
request_fun = openai.ChatCompletion.acreate
self.can_chat = True
super().__init__(model_name, user_name, request_fun, http_proxy, **kwargs)
def request(self, prompts, **kwargs):
prompts = self.__msg_handle__(prompts)
kwargs['messages'] = prompts
super().request(**kwargs)
self.ret_handle()
def __msg_handle__(self, msgs):
temp_msgs = []
# 把msgs拷贝进temp_msgs
for msg in msgs:
temp_msgs.append(msg.copy())
return temp_msgs
def get_message(self):
return self.ret["choices"][0]["message"]['content'] #需要时直接加载加快请求速度,降低内存消耗
class CompletionModel(ModelRequest):
"""Completion接口的请求实现"""
def __init__(self, model_name, user_name, http_proxy:str = None, **kwargs):
if http_proxy == None:
request_fun = openai.Completion.create
else:
request_fun = openai.Completion.acreate
super().__init__(model_name, user_name, request_fun, http_proxy, **kwargs)
def request(self, prompts, **kwargs):
prompts = self.__msg_handle__(prompts)
kwargs['prompt'] = prompts
super().request(**kwargs)
self.ret_handle()
def __msg_handle__(self, msgs):
prompt = ''
for msg in msgs:
prompt = prompt + "{}: {}\n".format(msg['role'], msg['content'])
# for msg in msgs:
# if msg['role'] == 'assistant':
# prompt = prompt + "{}\n".format(msg['content'])
# else:
# prompt = prompt + "{}:{}\n".format(msg['role'] , msg['content'])
prompt = prompt + "assistant: "
return prompt
def get_message(self):
return self.ret["choices"][0]["text"]
def create_openai_model_request(model_name: str, user_name: str = 'user', http_proxy:str = None) -> ModelRequest:
"""使用给定的模型名称创建模型请求对象"""
def select_request_cls(model_name: str, messages: list, args: dict) -> RequestBase:
if model_name in CHAT_COMPLETION_MODELS:
model = ChatCompletionModel(model_name, user_name, http_proxy)
return ChatCompletionRequest(model_name, messages, **args)
elif model_name in COMPLETION_MODELS:
model = CompletionModel(model_name, user_name, http_proxy)
else :
log = "找不到模型[{}],请检查配置文件".format(model_name)
logging.error(log)
raise IndexError(log)
logging.debug("使用接口[{}]创建模型请求[{}]".format(model.__class__.__name__, model_name))
return model
return CompletionRequest(model_name, messages, **args)
raise ValueError("不支持模型[{}],请检查配置文件".format(model_name))
def count_chat_completion_tokens(messages: list, model: str) -> int:
"""Return the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model in {
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0314",
"gpt-4-32k-0314",
"gpt-4-0613",
"gpt-4-32k-0613",
}:
tokens_per_message = 3
tokens_per_name = 1
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif "gpt-3.5-turbo" in model:
# print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
return count_chat_completion_tokens(messages, model="gpt-3.5-turbo-0613")
elif "gpt-4" in model:
# print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
return count_chat_completion_tokens(messages, model="gpt-4-0613")
else:
raise NotImplementedError(
f"""count_chat_completion_tokens() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
)
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
def count_completion_tokens(messages: list, model: str) -> int:
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
text = ""
for message in messages:
text += message['role'] + message['content'] + "\n"
text += "assistant: "
return len(encoding.encode(text))
def count_tokens(messages: list, model: str):
if model in CHAT_COMPLETION_MODELS:
return count_chat_completion_tokens(messages, model)
elif model in COMPLETION_MODELS:
return count_completion_tokens(messages, model)
raise ValueError("不支持模型[{}],请检查配置文件".format(model))

View File

@@ -1,28 +0,0 @@
# 计费模块
# 已弃用 https://github.com/RockChinQ/QChatGPT/issues/81
import logging
pricing = {
"base": { # 文字模型单位是1000字符
"text-davinci-003": 0.02,
},
"image": {
"256x256": 0.016,
"512x512": 0.018,
"1024x1024": 0.02,
}
}
def language_base_price(model, text):
salt_rate = 0.93
length = ((len(text.encode('utf-8')) - len(text)) / 2 + len(text)) * salt_rate
logging.debug("text length: %d" % length)
return pricing["base"][model] * length / 1000
def image_price(size):
logging.debug("image size: %s" % size)
return pricing["image"][size]

View File

@@ -16,6 +16,8 @@ import pkg.utils.context
import pkg.plugin.host as plugin_host
import pkg.plugin.models as plugin_models
from pkg.openai.modelmgr import count_tokens
# 运行时保存的所有session
sessions = {}
@@ -107,9 +109,6 @@ class Session:
prompt = []
"""使用list来保存会话中的回合"""
token_counts = []
"""每个回合的token数量"""
default_prompt = []
"""本session的默认prompt"""
@@ -195,7 +194,7 @@ class Session:
# 请求回复
# 这个函数是阻塞的
def append(self, text: str) -> str:
def append(self, text: str=None) -> str:
"""向session中添加一条消息返回接口回复"""
self.last_interact_timestamp = int(time.time())
@@ -215,29 +214,92 @@ class Session:
config = pkg.utils.context.get_config()
max_length = config.prompt_submit_length
prompts, counts = self.cut_out(text, max_length)
local_default_prompt = self.default_prompt.copy()
local_prompt = self.prompt.copy()
# 触发PromptPreProcessing事件
args = {
'session_name': self.name,
'default_prompt': self.default_prompt,
'prompt': self.prompt,
'text_message': text,
}
event = pkg.plugin.host.emit(plugin_models.PromptPreProcessing, **args)
if event.get_return_value('default_prompt') is not None:
local_default_prompt = event.get_return_value('default_prompt')
if event.get_return_value('prompt') is not None:
local_prompt = event.get_return_value('prompt')
if event.get_return_value('text_message') is not None:
text = event.get_return_value('text_message')
prompts, _ = self.cut_out(text, max_length, local_default_prompt, local_prompt)
res_text = ""
pending_msgs = []
total_tokens = 0
for resp in pkg.utils.context.get_openai_manager().request_completion(prompts):
if resp['choices'][0]['message']['type'] == 'text': # 普通回复
res_text += resp['choices'][0]['message']['content']
total_tokens += resp['usage']['total_tokens']
pending_msgs.append(
{
"role": "assistant",
"content": resp['choices'][0]['message']['content']
}
)
elif resp['choices'][0]['message']['type'] == 'function_call':
# self.prompt.append(
# {
# "role": "assistant",
# "content": "function call: "+json.dumps(resp['choices'][0]['message']['function_call'])
# }
# )
total_tokens += resp['usage']['total_tokens']
elif resp['choices'][0]['message']['type'] == 'function_return':
# self.prompt.append(
# {
# "role": "function",
# "name": resp['choices'][0]['message']['function_name'],
# "content": json.dumps(resp['choices'][0]['message']['content'])
# }
# )
# total_tokens += resp['usage']['total_tokens']
pass
# 计算请求前的prompt数量
total_token_before_query = 0
for token_count in counts:
total_token_before_query += token_count
# 向API请求补全
message, total_token = pkg.utils.context.get_openai_manager().request_completion(
prompts,
)
# message, total_token = pkg.utils.context.get_openai_manager().request_completion(
# prompts,
# )
# 成功获取,处理回复
res_test = message
res_ans = res_test.strip()
# res_test = message
res_ans = res_text.strip()
# 将此次对话的双方内容加入到prompt中
self.prompt.append({'role': 'user', 'content': text})
self.prompt.append({'role': 'assistant', 'content': res_ans})
# self.prompt.append({'role': 'user', 'content': text})
# self.prompt.append({'role': 'assistant', 'content': res_ans})
if text:
self.prompt.append({'role': 'user', 'content': text})
# 添加pending_msgs
self.prompt += pending_msgs
# 向token_counts中添加本回合的token数量
self.token_counts.append(total_token-total_token_before_query)
logging.debug("本回合使用token: {}, session counts: {}".format(total_token-total_token_before_query, self.token_counts))
# self.token_counts.append(total_tokens-total_token_before_query)
# logging.debug("本回合使用token: {}, session counts: {}".format(total_tokens-total_token_before_query, self.token_counts))
if self.just_switched_to_exist_session:
self.just_switched_to_exist_session = False
@@ -261,7 +323,7 @@ class Session:
return question
# 构建对话体
def cut_out(self, msg: str, max_tokens: int) -> tuple[list, list]:
def cut_out(self, msg: str, max_tokens: int, default_prompt: list, prompt: list) -> tuple[list, list]:
"""将现有prompt进行切割处理使得新的prompt长度不超过max_tokens
:return: (新的prompt, 新的token_counts)
@@ -274,42 +336,35 @@ class Session:
# 包装目前的对话回合内容
changable_prompts = []
changable_counts = []
# 倒着来, 遍历prompt的步长为2, 遍历tokens_counts的步长为1
changable_index = len(self.prompt) - 1
token_count_index = len(self.token_counts) - 1
packed_tokens = 0
use_model = pkg.utils.context.get_config().completion_api_params['model']
while changable_index >= 0 and token_count_index >= 0:
if packed_tokens + self.token_counts[token_count_index] > max_tokens:
ptr = len(prompt) - 1
# 直接从后向前扫描拼接,不管是否是整回合
while ptr >= 0:
if count_tokens(prompt[ptr:ptr+1]+changable_prompts, use_model) > max_tokens:
break
changable_prompts.insert(0, self.prompt[changable_index])
changable_prompts.insert(0, self.prompt[changable_index - 1])
changable_counts.insert(0, self.token_counts[token_count_index])
packed_tokens += self.token_counts[token_count_index]
changable_prompts.insert(0, prompt[ptr])
changable_index -= 2
token_count_index -= 1
ptr -= 1
# 将default_prompt和changable_prompts合并
result_prompt = self.default_prompt + changable_prompts
result_prompt = default_prompt + changable_prompts
# 添加当前问题
result_prompt.append(
{
'role': 'user',
'content': msg
}
)
if msg:
result_prompt.append(
{
'role': 'user',
'content': msg
}
)
logging.debug('cut_out: {}\nchangable section tokens: {}\npacked counts: {}\nsession counts: {}'.format(json.dumps(result_prompt, ensure_ascii=False, indent=4),
packed_tokens,
changable_counts,
self.token_counts))
logging.debug("cut_out: {}".format(json.dumps(result_prompt, ensure_ascii=False, indent=4)))
return result_prompt, changable_counts
return result_prompt, count_tokens(changable_prompts, use_model)
# 持久化session
def persistence(self):
@@ -327,7 +382,7 @@ class Session:
json.dumps(self.prompt), json.dumps(self.default_prompt), json.dumps(self.token_counts))
# 重置session
def reset(self, explicit: bool = False, expired: bool = False, schedule_new: bool = True, use_prompt: str = None):
def reset(self, explicit: bool = False, expired: bool = False, schedule_new: bool = True, use_prompt: str = None, persist: bool = False):
if self.prompt:
self.persistence()
if explicit:
@@ -345,7 +400,8 @@ class Session:
if expired:
pkg.utils.context.get_database_manager().set_session_expired(self.name, self.create_timestamp)
self.default_prompt = self.get_default_prompt(use_prompt)
if not persist: # 不要求保持default prompt
self.default_prompt = self.get_default_prompt(use_prompt)
self.prompt = []
self.token_counts = []
self.create_timestamp = int(time.time())

View File

@@ -16,6 +16,8 @@ import pkg.qqbot.adapter as msadapter
from mirai import Mirai
from CallingGPT.session.session import Session
__plugins__ = {}
"""插件列表
@@ -42,6 +44,15 @@ __plugins__ = {}
__plugins_order__ = []
"""插件顺序"""
__enable_content_functions__ = True
"""是否启用内容函数"""
__callable_functions__ = []
"""供GPT调用的函数结构"""
__function_inst_map__: dict[str, callable] = {}
"""函数名:实例 映射"""
def generate_plugin_order():
"""根据__plugin__生成插件初始顺序无视是否启用"""
@@ -102,6 +113,10 @@ def load_plugins():
# 加载插件顺序
settings.load_settings()
# 输出已注册的内容函数列表
logging.debug("registered content functions: {}".format(__callable_functions__))
logging.debug("function instance map: {}".format(__function_inst_map__))
def initialize_plugins():
"""初始化插件"""
@@ -251,7 +266,7 @@ class EventContext:
self.__return_value__[key] = []
self.__return_value__[key].append(ret)
def get_return(self, key: str):
def get_return(self, key: str) -> list:
"""获取key的所有返回值"""
if key in self.__return_value__:
return self.__return_value__[key]
@@ -300,7 +315,9 @@ class PluginHost:
"""插件宿主"""
def __init__(self):
"""初始化插件宿主"""
context.set_plugin_host(self)
self.calling_gpt_session = Session([])
def get_runtime_context(self) -> context:
"""获取运行时上下文pkg.utils.context模块的对象

View File

@@ -132,18 +132,64 @@ KeySwitched = "key_switched"
key_list: list[str] api-key列表
"""
PromptPreProcessing = "prompt_pre_processing"
"""每回合调用接口前对prompt进行预处理时触发此事件不支持阻止默认行为
kwargs:
session_name: str 会话名称(<launcher_type>_<launcher_id>)
default_prompt: list 此session使用的情景预设内容
prompt: list 此session现有的prompt内容
text_message: str 用户发送的消息文本
returns (optional):
default_prompt: list 修改后的情景预设内容
prompt: list 修改后的prompt内容
text_message: str 修改后的消息文本
"""
def on(event: str):
def on(*args, **kwargs):
"""注册事件监听器
:param
event: str 事件名称
"""
return Plugin.on(event)
return Plugin.on(*args, **kwargs)
def func(*args, **kwargs):
"""注册内容函数声明此函数为一个内容函数在对话中将发送此函数给GPT以供其调用
此函数可以具有任意的参数,但必须按照[此文档](https://github.com/RockChinQ/CallingGPT/wiki/1.-Function-Format#function-format)
所述的格式编写函数的docstring。
此功能仅支持在使用gpt-3.5或gpt-4系列模型时使用。
"""
return Plugin.func(*args, **kwargs)
__current_registering_plugin__ = ""
def require_ver(ge: str, le: str="v999.9.9") -> bool:
"""插件版本要求装饰器
Args:
ge (str): 最低版本要求
le (str, optional): 最高版本要求
Returns:
bool: 是否满足要求, False时为无法获取版本号True时为满足要求报错为不满足要求
"""
qchatgpt_version = ""
from pkg.utils.updater import get_current_tag, compare_version_str
try:
qchatgpt_version = get_current_tag() # 从updater模块获取版本号
except:
return False
if compare_version_str(qchatgpt_version, ge) < 0 or \
(compare_version_str(qchatgpt_version, le) > 0):
raise Exception("QChatGPT 版本不满足要求,某些功能(可能是由插件提供的)无法正常使用。(要求版本:{}-{},但当前版本:{}".format(ge, le, qchatgpt_version))
return True
class Plugin:
"""插件基类"""
@@ -176,6 +222,34 @@ class Plugin:
return wrapper
@classmethod
def func(cls, name: str=None):
"""内容函数装饰器
"""
global __current_registering_plugin__
from CallingGPT.entities.namespace import get_func_schema
def wrapper(func):
function_schema = get_func_schema(func)
function_schema['name'] = __current_registering_plugin__ + '-' + (func.__name__ if name is None else name)
function_schema['enabled'] = True
host.__function_inst_map__[function_schema['name']] = function_schema['function']
del function_schema['function']
# logging.debug("registering content function: p='{}', f='{}', s={}".format(__current_registering_plugin__, func, function_schema))
host.__callable_functions__.append(
function_schema
)
return func
return wrapper
def register(name: str, description: str, version: str, author: str):
"""注册插件, 此函数作为装饰器使用

View File

@@ -8,7 +8,10 @@ import logging
def wrapper_dict_from_runtime_context() -> dict:
"""从变量中包装settings.json的数据字典"""
settings = {
"order": []
"order": [],
"functions": {
"enabled": host.__enable_content_functions__
}
}
for plugin_name in host.__plugins_order__:
@@ -22,6 +25,11 @@ def apply_settings(settings: dict):
if "order" in settings:
host.__plugins_order__ = settings["order"]
if "functions" in settings:
if "enabled" in settings["functions"]:
host.__enable_content_functions__ = settings["functions"]["enabled"]
# logging.debug("set content function enabled: {}".format(host.__enable_content_functions__))
def dump_settings():
"""保存settings.json数据"""
@@ -78,6 +86,17 @@ def load_settings():
settings["order"].append(plugin_name)
settings_modified = True
if "functions" not in settings:
settings["functions"] = {
"enabled": host.__enable_content_functions__
}
settings_modified = True
elif "enabled" not in settings["functions"]:
settings["functions"]["enabled"] = host.__enable_content_functions__
settings_modified = True
logging.info("已全局{}内容函数。".format("启用" if settings["functions"]["enabled"] else "禁用"))
apply_settings(settings)
if settings_modified:

View File

@@ -28,6 +28,11 @@ def apply_switch(switch: dict):
for plugin_name in switch:
host.__plugins__[plugin_name]["enabled"] = switch[plugin_name]["enabled"]
# 查找此插件的所有内容函数
for func in host.__callable_functions__:
if func['name'].startswith(plugin_name + '-'):
func['enabled'] = switch[plugin_name]["enabled"]
def dump_switch():
"""保存开关数据"""

View File

@@ -0,0 +1,28 @@
from ..aamgr import AbstractCommandNode, Context
import logging
@AbstractCommandNode.register(
parent=None,
name="func",
description="管理内容函数",
usage="!func",
aliases=[],
privilege=1
)
class FuncCommand(AbstractCommandNode):
@classmethod
def process(cls, ctx: Context) -> tuple[bool, list]:
from pkg.plugin.models import host
reply = []
reply_str = "当前已加载的内容函数:\n\n"
index = 1
for func in host.__callable_functions__:
reply_str += "{}. {}{}:\n{}\n\n".format(index, ("(已禁用) " if not func['enabled'] else ""), func['name'], func['description'])
reply = [reply_str]
return True, reply

View File

@@ -12,7 +12,7 @@ import pkg.utils.updater as updater
description="插件管理",
usage="!plugin\n!plugin get <插件仓库地址>\n!plugin update\n!plugin del <插件名>\n!plugin on <插件名>\n!plugin off <插件名>",
aliases=[],
privilege=2
privilege=1
)
class PluginCommand(AbstractCommandNode):
@classmethod
@@ -188,6 +188,11 @@ class PluginOnOffCommand(AbstractCommandNode):
plugin_name = ctx.crt_params[0]
if plugin_name in plugin_list:
plugin_list[plugin_name]['enabled'] = new_status
for func in plugin_host.__callable_functions__:
if func['name'].startswith(plugin_name+"-"):
func['enabled'] = new_status
plugin_switch.dump_switch()
reply = ["[bot]已{}插件: {}".format("启用" if new_status else "禁用", plugin_name)]
else:

View File

@@ -0,0 +1,27 @@
from ..aamgr import AbstractCommandNode, Context
@AbstractCommandNode.register(
parent=None,
name="continue",
description="继续未完成的响应",
usage="!continue",
aliases=[],
privilege=1
)
class ContinueCommand(AbstractCommandNode):
@classmethod
def process(cls, ctx: Context) -> tuple[bool, list]:
import pkg.openai.session
import config
session_name = ctx.session_name
reply = []
session = pkg.openai.session.get_session(session_name)
text = session.append()
reply = [text]
return True, reply

View File

@@ -115,7 +115,7 @@ def process_normal_message(text_message: str, mgr, config, launcher_type: str,
"[bot]err:RateLimitError,请重试或联系作者,或等待修复")
except openai.error.InvalidRequestError as e:
if config.auto_reset and "This model's maximum context length is" in str(e):
session.reset()
session.reset(persist=True)
reply = [tips_custom.session_auto_reset_message]
else:
reply = handle_exception("{}API调用参数错误:{}\n".format(

File diff suppressed because one or more lines are too long

View File

@@ -78,6 +78,34 @@ def get_current_tag() -> str:
return current_tag
def compare_version_str(v0: str, v1: str) -> int:
"""比较两个版本号"""
# 删除版本号前的v
if v0.startswith("v"):
v0 = v0[1:]
if v1.startswith("v"):
v1 = v1[1:]
v0:list = v0.split(".")
v1:list = v1.split(".")
# 如果两个版本号节数不同把短的后面用0补齐
if len(v0) < len(v1):
v0.extend(["0"]*(len(v1)-len(v0)))
elif len(v0) > len(v1):
v1.extend(["0"]*(len(v0)-len(v1)))
# 从高位向低位比较
for i in range(len(v0)):
if int(v0[i]) > int(v1[i]):
return 1
elif int(v0[i]) < int(v1[i]):
return -1
return 0
def update_all(cli: bool = False) -> bool:
"""检查更新并下载源码"""
current_tag = get_current_tag()

View File

@@ -2,9 +2,11 @@ requests~=2.31.0
openai~=0.27.8
dulwich~=0.21.5
colorlog~=6.6.0
yiri-mirai~=0.2.7
yiri-mirai
websockets
urllib3~=1.26.10
func_timeout~=4.3.5
Pillow
nakuru-project-idk
nakuru-project-idk
CallingGPT
tiktoken

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

View File

@@ -1,12 +1,14 @@
{
"comment": "以下为命令权限请设置到cmdpriv.json中。关于此功能的说明请查看https://github.com/RockChinQ/QChatGPT/wiki/%E5%8A%9F%E8%83%BD%E4%BD%BF%E7%94%A8#%E5%91%BD%E4%BB%A4%E6%9D%83%E9%99%90%E6%8E%A7%E5%88%B6",
"draw": 1,
"plugin": 2,
"func": 1,
"plugin": 1,
"plugin.get": 2,
"plugin.update": 2,
"plugin.del": 2,
"plugin.off": 2,
"plugin.on": 2,
"continue": 1,
"default": 1,
"default.set": 2,
"del": 1,

View File

@@ -180,6 +180,7 @@
!draw <提示语> 进行绘图
!version 查看当前版本并检查更新
!resend 重新回复上一个问题
!continue 继续响应未完成的回合(通常用于内容函数继续调用)
!plugin 用法请查看插件使用页的`管理`章节
!default 查看可用的情景预设值
```

View File

@@ -0,0 +1,24 @@
> 说白了就是ChatGPT官方插件那种东西
内容函数是基于[GPT的Function Calling能力](https://platform.openai.com/docs/guides/gpt/function-calling)实现的这是一种嵌入对话中由GPT自动调用的函数。
例如我们为GPT提供一个函数`access_the_web`并提供其详细的描述以及其参数的描述那么当我们在与GPT对话时涉及类似以下内容时
```
Q: 请搜索一下github上有那些QQ机器人项目
Q: 请为我搜索一些不错的云服务商网站?
Q阅读并总结这篇文章https://zhuanlan.zhihu.com/p/607570830
Q搜一下清远今天天气如何
```
GPT将会回复一个对`access_the_web`的函数调用请求QChatGPT将自动处理执行该调用并返回结果给GPT使其生成新的回复。
当然,函数调用功能不止局限于网络访问,还可以实现图片处理、科学计算、行程规划等需要调用函数的功能,理论上我们可以通过内容函数实现与`ChatGPT Plugins`相同的功能。
- 您需要使用`v2.5.0`以上的版本才能加载包含内容函数的插件
- 您需要同时在`config.py`中的`completion_api_params`中设置`model`为支持函数调用的模型,推荐使用`gpt-3.5-turbo-16k`
- 使用此功能可能会造成难以预期的账号余额消耗,请关注
## QChatGPT的一些不错的内容函数插件
- [WebwlkrPlugin](https://github.com/RockChinQ/WebwlkrPlugin) - 让机器人能联网!!

View File

@@ -4,6 +4,8 @@ QChatGPT 插件使用Wiki
`plugins`目录下的所有`.py`程序都将被加载,除了`__init__.py`之外的模块支持热加载
> 插件分为`行为插件`和`内容插件`两种行为插件由主程序运行中的事件驱动内容插件由GPT生成的内容驱动请查看内容插件页
## 安装
### 储存库克隆(推荐)
@@ -33,6 +35,8 @@ QChatGPT 插件使用Wiki
!plugin del <插件名> 删除插件(需要管理员权限)
!plugin on <插件名> 启用插件(需要管理员权限)
!plugin off <插件名> 禁用插件(需要管理员权限)
!func 列出所有内容函数
```
### 控制插件执行顺序
@@ -42,4 +46,9 @@ QChatGPT 插件使用Wiki
### 启用或关闭插件
无需卸载即可管理插件的开关
编辑`plugins`目录下的`switch.json`文件,将相应的插件的`enabled`字段设置为`true/false(开/关)`,之后重启程序或执行热重载即可控制插件开关
编辑`plugins`目录下的`switch.json`文件,将相应的插件的`enabled`字段设置为`true/false(开/关)`,之后重启程序或执行热重载即可控制插件开关
### 控制全局内容函数开关
内容函数是基于[GPT的Function Calling能力](https://platform.openai.com/docs/guides/gpt/function-calling)实现的这是一种嵌入对话中由GPT自动调用的函数。
每个插件可以自行注册内容函数,您可以在`plugins`目录下的`settings.json`中设置`functions`下的`enabled``true``false`控制这些内容函数的启用或禁用。

View File

@@ -113,6 +113,199 @@ class HelloPlugin(Plugin):
- 一个目录内可以存放多个Python程序文件以独立出插件的各个功能便于开发者管理但不建议在一个目录内注册多个插件
- 插件需要的依赖库请在插件目录下的`requirements.txt`中指定,程序从储存库获取此插件时将自动安装依赖
## 🪝内容函数
通过[GPT的Function Calling能力](https://platform.openai.com/docs/guides/gpt/function-calling)实现的`内容函数`这是一种嵌入对话中由GPT自动调用的函数。
> 您的插件比一定必须包含内容函数,请先查看内容函数页了解此功能
<details>
<summary>示例:联网插件</summary>
加载含有联网功能的内容函数的插件[WebwlkrPlugin](https://github.com/RockChinQ/WebwlkrPlugin),向机器人询问在线内容
```
# 控制台输出
[2023-07-29 17:37:18.698] message.py (26) - [INFO] : [person_1010553892]发送消息:介绍一下这个项目https://git...
[2023-07-29 17:37:21.292] util.py (67) - [INFO] : message='OpenAI API response' path=https://api.openai.com/v1/chat/completions processing_ms=1902 request_id=941afc13b2e1bba1e7877b92a970cdea response_code=200
[2023-07-29 17:37:21.293] chat_completion.py (159) - [INFO] : 执行函数调用: name=Webwlkr-access_the_web, arguments={'url': 'https://github.com/RockChinQ/QChatGPT', 'brief_len': 512}
[2023-07-29 17:37:21.848] chat_completion.py (164) - [INFO] : 函数执行完成。
```
![Webwlkr插件](https://github.com/RockChinQ/QChatGPT/blob/master/res/screenshots/webwlkr_plugin.png?raw=true)
</details>
### 内容函数编写步骤
1⃣ 请先按照上方步骤编写您的插件基础结构,现在请删除(当然你也可以不删,只是为了简洁)上述插件内容的诸个由`@on`装饰的类函数
<details>
<summary>删除后的结构</summary>
```python
from pkg.plugin.models import *
from pkg.plugin.host import EventContext, PluginHost
"""
在收到私聊或群聊消息"hello"时,回复"hello, <发送者id>!""hello, everyone!"
"""
# 注册插件
@register(name="Hello", description="hello world", version="0.1", author="RockChinQ")
class HelloPlugin(Plugin):
# 插件加载时触发
# plugin_host (pkg.plugin.host.PluginHost) 提供了与主程序交互的一些方法,详细请查看其源码
def __init__(self, plugin_host: PluginHost):
pass
# 插件卸载时触发
def __del__(self):
pass
```
</details>
2⃣ 现在我们将以下函数添加到刚刚删除的函数的位置
```Python
# 要添加的函数
@func(name="access_the_web") # 设置函数名称
def _(url: str):
"""Call this function to search about the question before you answer any questions.
- Do not search through baidu.com at any time.
- If you need to search somthing, visit https://www.google.com/search?q=xxx.
- If user ask you to open a url (start with http:// or https://), visit it directly.
- Summary the plain content result by yourself, DO NOT directly output anything in the result you got.
Args:
url(str): url to visit
Returns:
str: plain text content of the web page
"""
import requests
from bs4 import BeautifulSoup
# 你需要先使用
# pip install beautifulsoup4
# 安装依赖
r = requests.get(
url,
timeout=10,
headers={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36 Edg/115.0.1901.183"
}
)
soup = BeautifulSoup(r.text, 'html.parser')
s = soup.get_text()
# 删除多余的空行或仅有\t和空格的行
s = re.sub(r'\n\s*\n', '\n', s)
if len(s) >= 512: # 截取获取到的网页纯文本内容的前512个字
return s[:512]
return s
```
<details>
<summary>现在这个文件内容应该是这样</summary>
```python
from pkg.plugin.models import *
from pkg.plugin.host import EventContext, PluginHost
"""
在收到私聊或群聊消息"hello"时,回复"hello, <发送者id>!""hello, everyone!"
"""
# 注册插件
@register(name="Hello", description="hello world", version="0.1", author="RockChinQ")
class HelloPlugin(Plugin):
# 插件加载时触发
# plugin_host (pkg.plugin.host.PluginHost) 提供了与主程序交互的一些方法,详细请查看其源码
def __init__(self, plugin_host: PluginHost):
pass
@func(name="access_the_web")
def _(url: str):
"""Call this function to search about the question before you answer any questions.
- Do not search through baidu.com at any time.
- If you need to search somthing, visit https://www.google.com/search?q=xxx.
- If user ask you to open a url (start with http:// or https://), visit it directly.
- Summary the plain content result by yourself, DO NOT directly output anything in the result you got.
Args:
url(str): url to visit
Returns:
str: plain text content of the web page
"""
import requests
from bs4 import BeautifulSoup
# 你需要先使用
# pip install beautifulsoup4
# 安装依赖
r = requests.get(
url,
timeout=10,
headers={
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/115.0.0.0 Safari/537.36 Edg/115.0.1901.183"
}
)
soup = BeautifulSoup(r.text, 'html.parser')
s = soup.get_text()
# 删除多余的空行或仅有\t和空格的行
s = re.sub(r'\n\s*\n', '\n', s)
if len(s) >= 512: # 截取获取到的网页纯文本内容的前512个字
return s[:512]
return s
# 插件卸载时触发
def __del__(self):
pass
```
</details>
#### 请注意:
- 函数的注释必须严格按照要求的格式进行书写,具体格式请查看[此文档](https://github.com/RockChinQ/CallingGPT/wiki/1.-Function-Format#function-format)
- 内容函数和`以@on装饰的行为函数`可以同时存在于同一个插件,并同时受到`switch.json`中的插件开关的控制
- 务必确保您使用的模型支持函数调用功能,可以到`config.py``completion_api_params`中修改模型,推荐使用`gpt-3.5-turbo-16k`
3⃣ 现在您的程序已具备网络访问功能,重启程序,询问机器人有关在线的内容或直接发送文章链接请求其总结。
- 这仅仅是一个示例,需要更高效的网络访问能力支持插件,请查看[WebwlkrPlugin](https://github.com/RockChinQ/WebwlkrPlugin)
## 🔒版本要求
若您的插件对主程序的版本有要求,可以使用以下函数进行断言,若不符合版本,此函数将报错并打断此函数所在的流程:
```python
require_ver("v2.5.1") # 要求最低版本为 v2.5.1
```
```python
require_ver("v2.5.1", "v2.6.0") # 要求最低版本为 v2.5.1, 同时要求最高版本为 v2.6.0
```
- 此函数在主程序`v2.5.1`中加入
- 此函数声明在`pkg.plugin.models`模块中,在插件示例代码最前方已引入此模块所有内容,故可直接使用
## 📄API参考
### 说明
@@ -257,6 +450,20 @@ KeySwitched = "key_switched"
key_name: str 切换成功的api-key名称
key_list: list[str] api-key列表
"""
PromptPreProcessing = "prompt_pre_processing" # 于v2.5.1加入
"""每回合调用接口前对prompt进行预处理时触发此事件不支持阻止默认行为
kwargs:
session_name: str 会话名称(<launcher_type>_<launcher_id>)
default_prompt: list 此session使用的情景预设内容
prompt: list 此session现有的prompt内容
text_message: str 用户发送的消息文本
returns (optional):
default_prompt: list 修改后的情景预设内容
prompt: list 修改后的prompt内容
text_message: str 修改后的消息文本
"""
```
### host: PluginHost 详解

42
tests/bs_test/bs_test.py Normal file
View File

@@ -0,0 +1,42 @@
import requests
from bs4 import BeautifulSoup
import os
import random
import sys
user_agents = [
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:89.0) Gecko/20100101 Firefox/89.0',
'Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:88.0) Gecko/20100101 Firefox/88.0',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/92.0.4515.131 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Version/14.1.2 Safari/537.36',
'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Version/14.1 Safari/537.36',
'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:89.0) Gecko/20100101 Firefox/89.0',
'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:88.0) Gecko/20100101 Firefox/88.0'
]
r = requests.get(
sys.argv[1],
headers={
"User-Agent": random.choice(user_agents)
}
)
soup = BeautifulSoup(r.text, 'html.parser')
# print(soup.get_text())
raw = soup.get_text()
import re
# strip每一行
# raw = '\n'.join([line.strip() for line in raw.split('\n')])
# # 删除所有空行或只有空格的行
# raw = re.sub(r'\n\s*\n', '\n', raw)
print(raw)

View File

@@ -0,0 +1,57 @@
import os
import sys
import paramiko
import time
import select
class sshClient:
#创建一个ssh客户端和服务器连接上准备发消息
def __init__(self,host,port,user,password):
self.trans = paramiko.Transport((host, port))
self.trans.start_client()
self.trans.auth_password(username=user, password=password)
self.channel = self.trans.open_session()
self.channel.get_pty()
self.channel.invoke_shell()
#给服务器发送一个命令
def sendCmd(self,cmd):
self.channel.sendall(cmd)
#接收的时候,有时候服务器处理的比较慢,需要设置一个延时等待一下。
def recvResponse(self,timeout):
data=b''
while True:
try:
#使用select不断的读取数据直到没有多余的数据了超时返回。
readable,w,e= select.select([self.channel],[],[],timeout)
if self.channel in readable:
data = self.channel.recv(1024)
else:
sys.stdout.write(data.decode())
sys.stdout.flush()
return data.decode()
except TimeoutError:
sys.stdout.write(data.decode())
sys.stdout.flush()
return data.decode
#关闭客户端
def close(self):
self.channel.close()
self.trans.close()
host='host'
port=22#your port
user='root'
pwd='pass'
ssh = sshClient(host,port,user,pwd)
response = ssh.recvResponse(1)
response = ssh.sendCmd("ls\n")
ssh.sendCmd("cd /home\n")
response = ssh.recvResponse(1)
ssh.sendCmd("ls\n")
response = ssh.recvResponse(1)
ssh.close()

View File

@@ -0,0 +1,124 @@
import tiktoken
import openai
import json
import os
openai.api_key = os.getenv("OPENAI_API_KEY")
def encode(text: str, model: str):
import tiktoken
enc = tiktoken.get_encoding("cl100k_base")
assert enc.decode(enc.encode("hello world")) == "hello world"
# To get the tokeniser corresponding to a specific model in the OpenAI API:
enc = tiktoken.encoding_for_model(model)
return enc.encode(text)
# def ask(prompt: str, model: str = "gpt-3.5-turbo"):
# # To get the tokeniser corresponding to a specific model in the OpenAI API:
# enc = tiktoken.encoding_for_model(model)
# resp = openai.ChatCompletion.create(
# model=model,
# messages=[
# {
# "role": "user",
# "content": prompt
# }
# ]
# )
# return enc.encode(prompt), enc.encode(resp['choices'][0]['message']['content']), resp
def ask(
messages: list,
model: str = "gpt-3.5-turbo"
):
enc = tiktoken.encoding_for_model(model)
resp = openai.ChatCompletion.create(
model=model,
messages=messages
)
txt = ""
for r in messages:
txt += r['role'] + r['content'] + "\n"
txt += "assistant: "
return enc.encode(txt), enc.encode(resp['choices'][0]['message']['content']), resp
def num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613"):
"""Return the number of tokens used by a list of messages."""
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
print("Warning: model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model in {
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0314",
"gpt-4-32k-0314",
"gpt-4-0613",
"gpt-4-32k-0613",
}:
tokens_per_message = 3
tokens_per_name = 1
elif model == "gpt-3.5-turbo-0301":
tokens_per_message = 4 # every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_name = -1 # if there's a name, the role is omitted
elif "gpt-3.5-turbo" in model:
print("Warning: gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613.")
return num_tokens_from_messages(messages, model="gpt-3.5-turbo-0613")
elif "gpt-4" in model:
print("Warning: gpt-4 may update over time. Returning num tokens assuming gpt-4-0613.")
return num_tokens_from_messages(messages, model="gpt-4-0613")
else:
raise NotImplementedError(
f"""num_tokens_from_messages() is not implemented for model {model}. See https://github.com/openai/openai-python/blob/main/chatml.md for information on how messages are converted to tokens."""
)
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3 # every reply is primed with <|start|>assistant<|message|>
return num_tokens
messages = [
{
"role": "user",
"content": "你叫什么名字?"
},{
"role": "assistant",
"content": "我是AI助手没有具体的名字。你可以叫我GPT-3。有什么可以帮到你的吗"
},{
"role": "user",
"content": "你是由谁开发的?"
},{
"role": "assistant",
"content": "我是由OpenAI开发的一家人工智能研究实验室。OpenAI的使命是促进人工智能的发展使其为全人类带来积极影响。我是由OpenAI团队使用GPT-3模型训练而成的。"
},{
"role": "user",
"content": "很高兴见到你。"
}
]
pro, rep, resp=ask(messages)
print(len(pro), len(rep))
print(resp)
print(resp['choices'][0]['message']['content'])
print(num_tokens_from_messages(messages, model="gpt-3.5-turbo"))