Compare commits

...

6 Commits

Author SHA1 Message Date
Junyan Qin
aa7c08ee00 chore: release v4.2.1 2025-08-21 10:15:05 +08:00
Junyan Qin
b98de29b07 feat: add shengsuanyun requester 2025-08-20 23:33:35 +08:00
fdc310
c7c2eb4518 fix:in the gmini tool_calls no id The resulting call failure (#1622)
* fix:in the dify agent llm return message can not joint

* fix:in the gmini tool_calls no id The resulting call failure
2025-08-20 22:39:16 +08:00
Ljzd_PRO
37fa318258 fix: update invoke_embedding to return only embeddings from client.embed (#1619) 2025-08-20 10:25:33 +08:00
fdc310
ff7bebb782 fix:in the dify agent llm return message can not joint (#1617) 2025-08-19 23:23:00 +08:00
Junyan Qin
30bb26f898 doc(README): streaming output 2025-08-18 21:21:50 +08:00
11 changed files with 210 additions and 8 deletions

View File

@@ -69,7 +69,7 @@ docker compose up -d
## ✨ 特性
- 💬 大模型对话、Agent支持多种大模型适配群聊和私聊具有多轮对话、工具调用、多模态能力自带 RAG知识库实现并深度适配 [Dify](https://dify.ai)。
- 💬 大模型对话、Agent支持多种大模型适配群聊和私聊具有多轮对话、工具调用、多模态、流式输出能力,自带 RAG知识库实现并深度适配 [Dify](https://dify.ai)。
- 🤖 多平台支持:目前支持 QQ、QQ频道、企业微信、个人微信、飞书、Discord、Telegram 等平台。
- 🛠️ 高稳定性、功能完备:原生支持访问控制、限速、敏感词过滤等机制;配置简单,支持多种部署方式。支持多流水线配置,不同机器人用于不同应用场景。
- 🧩 插件扩展、活跃社区:支持事件驱动、组件扩展等插件机制;适配 Anthropic [MCP 协议](https://modelcontextprotocol.io/);目前已有数百个插件。

View File

@@ -63,7 +63,7 @@ Click the Star and Watch button in the upper right corner of the repository to g
## ✨ Features
- 💬 Chat with LLM / Agent: Supports multiple LLMs, adapt to group chats and private chats; Supports multi-round conversations, tool calls, and multi-modal capabilities. Built-in RAG (knowledge base) implementation, and deeply integrates with [Dify](https://dify.ai).
- 💬 Chat with LLM / Agent: Supports multiple LLMs, adapt to group chats and private chats; Supports multi-round conversations, tool calls, multi-modal, and streaming output capabilities. Built-in RAG (knowledge base) implementation, and deeply integrates with [Dify](https://dify.ai).
- 🤖 Multi-platform Support: Currently supports QQ, QQ Channel, WeCom, personal WeChat, Lark, DingTalk, Discord, Telegram, etc.
- 🛠️ High Stability, Feature-rich: Native access control, rate limiting, sensitive word filtering, etc. mechanisms; Easy to use, supports multiple deployment methods. Supports multiple pipeline configurations, different bots can be used for different scenarios.
- 🧩 Plugin Extension, Active Community: Support event-driven, component extension, etc. plugin mechanisms; Integrate Anthropic [MCP protocol](https://modelcontextprotocol.io/); Currently has hundreds of plugins.

View File

@@ -63,7 +63,7 @@ LangBotはBTPanelにリストされています。BTPanelをインストール
## ✨ 機能
- 💬 LLM / エージェントとのチャット: 複数のLLMをサポートし、グループチャットとプライベートチャットに対応。マルチラウンドの会話、ツールの呼び出し、マルチモーダル機能をサポート、RAG知識ベースを組み込み、[Dify](https://dify.ai) と深く統合。
- 💬 LLM / エージェントとのチャット: 複数のLLMをサポートし、グループチャットとプライベートチャットに対応。マルチラウンドの会話、ツールの呼び出し、マルチモーダル、ストリーミング出力機能をサポート、RAG知識ベースを組み込み、[Dify](https://dify.ai) と深く統合。
- 🤖 多プラットフォーム対応: 現在、QQ、QQ チャンネル、WeChat、個人 WeChat、Lark、DingTalk、Discord、Telegram など、複数のプラットフォームをサポートしています。
- 🛠️ 高い安定性、豊富な機能: ネイティブのアクセス制御、レート制限、敏感な単語のフィルタリングなどのメカニズムをサポート。使いやすく、複数のデプロイ方法をサポート。複数のパイプライン設定をサポートし、異なるボットを異なる用途に使用できます。
- 🧩 プラグイン拡張、活発なコミュニティ: イベント駆動、コンポーネント拡張などのプラグインメカニズムをサポート。適配 Anthropic [MCP プロトコル](https://modelcontextprotocol.io/);豊富なエコシステム、現在数百のプラグインが存在。

View File

@@ -65,7 +65,7 @@ docker compose up -d
## ✨ 特性
- 💬 大模型對話、Agent支援多種大模型適配群聊和私聊具有多輪對話、工具調用、多模態能力自帶 RAG知識庫實現並深度適配 [Dify](https://dify.ai)。
- 💬 大模型對話、Agent支援多種大模型適配群聊和私聊具有多輪對話、工具調用、多模態、流式輸出能力,自帶 RAG知識庫實現並深度適配 [Dify](https://dify.ai)。
- 🤖 多平台支援:目前支援 QQ、QQ頻道、企業微信、個人微信、飛書、Discord、Telegram 等平台。
- 🛠️ 高穩定性、功能完備:原生支援訪問控制、限速、敏感詞過濾等機制;配置簡單,支援多種部署方式。支援多流水線配置,不同機器人用於不同應用場景。
- 🧩 外掛擴展、活躍社群:支援事件驅動、組件擴展等外掛機制;適配 Anthropic [MCP 協議](https://modelcontextprotocol.io/);目前已有數百個外掛。

View File

@@ -4,6 +4,13 @@ import typing
from . import chatcmpl
import uuid
from .. import errors, requester
from ....core import entities as core_entities
from ... import entities as llm_entities
from ...tools import entities as tools_entities
class GeminiChatCompletions(chatcmpl.OpenAIChatCompletions):
"""Google Gemini API 请求器"""
@@ -12,3 +19,127 @@ class GeminiChatCompletions(chatcmpl.OpenAIChatCompletions):
'base_url': 'https://generativelanguage.googleapis.com/v1beta/openai',
'timeout': 120,
}
async def _closure_stream(
self,
query: core_entities.Query,
req_messages: list[dict],
use_model: requester.RuntimeLLMModel,
use_funcs: list[tools_entities.LLMFunction] = None,
extra_args: dict[str, typing.Any] = {},
remove_think: bool = False,
) -> llm_entities.MessageChunk:
self.client.api_key = use_model.token_mgr.get_token()
args = {}
args['model'] = use_model.model_entity.name
if use_funcs:
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
if tools:
args['tools'] = tools
# 设置此次请求中的messages
messages = req_messages.copy()
# 检查vision
for msg in messages:
if 'content' in msg and isinstance(msg['content'], list):
for me in msg['content']:
if me['type'] == 'image_base64':
me['image_url'] = {'url': me['image_base64']}
me['type'] = 'image_url'
del me['image_base64']
args['messages'] = messages
args['stream'] = True
# 流式处理状态
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
chunk_idx = 0
thinking_started = False
thinking_ended = False
role = 'assistant' # 默认角色
tool_id = ""
tool_name = ''
# accumulated_reasoning = '' # 仅用于判断何时结束思维链
async for chunk in self._req_stream(args, extra_body=extra_args):
# 解析 chunk 数据
if hasattr(chunk, 'choices') and chunk.choices:
choice = chunk.choices[0]
delta = choice.delta.model_dump() if hasattr(choice, 'delta') else {}
finish_reason = getattr(choice, 'finish_reason', None)
else:
delta = {}
finish_reason = None
# 从第一个 chunk 获取 role后续使用这个 role
if 'role' in delta and delta['role']:
role = delta['role']
# 获取增量内容
delta_content = delta.get('content', '')
reasoning_content = delta.get('reasoning_content', '')
# 处理 reasoning_content
if reasoning_content:
# accumulated_reasoning += reasoning_content
# 如果设置了 remove_think跳过 reasoning_content
if remove_think:
chunk_idx += 1
continue
# 第一次出现 reasoning_content添加 <think> 开始标签
if not thinking_started:
thinking_started = True
delta_content = '<think>\n' + reasoning_content
else:
# 继续输出 reasoning_content
delta_content = reasoning_content
elif thinking_started and not thinking_ended and delta_content:
# reasoning_content 结束normal content 开始,添加 </think> 结束标签
thinking_ended = True
delta_content = '\n</think>\n' + delta_content
# 处理 content 中已有的 <think> 标签(如果需要移除)
# if delta_content and remove_think and '<think>' in delta_content:
# import re
#
# # 移除 <think> 标签及其内容
# delta_content = re.sub(r'<think>.*?</think>', '', delta_content, flags=re.DOTALL)
# 处理工具调用增量
# delta_tool_calls = None
if delta.get('tool_calls'):
for tool_call in delta['tool_calls']:
if tool_call['id'] == '' and tool_id == '':
tool_id = str(uuid.uuid4())
if tool_call['function']['name']:
tool_name = tool_call['function']['name']
tool_call['id'] = tool_id
tool_call['function']['name'] = tool_name
if tool_call['type'] is None:
tool_call['type'] = 'function'
# 跳过空的第一个 chunk只有 role 没有内容)
if chunk_idx == 0 and not delta_content and not reasoning_content and not delta.get('tool_calls'):
chunk_idx += 1
continue
# 构建 MessageChunk - 只包含增量内容
chunk_data = {
'role': role,
'content': delta_content if delta_content else None,
'tool_calls': delta.get('tool_calls'),
'is_final': bool(finish_reason),
}
# 移除 None 值
chunk_data = {k: v for k, v in chunk_data.items() if v is not None}
yield llm_entities.MessageChunk(**chunk_data)
chunk_idx += 1

View File

@@ -139,8 +139,8 @@ class OllamaChatCompletions(requester.ProviderAPIRequester):
input_text: list[str],
extra_args: dict[str, typing.Any] = {},
) -> list[list[float]]:
return await self.client.embed(
return (await self.client.embed(
model=model.model_entity.name,
input=input_text,
**extra_args,
)
)).embeddings

View File

@@ -0,0 +1,32 @@
from __future__ import annotations
import openai
import typing
from . import chatcmpl
import openai.types.chat.chat_completion as chat_completion
class ShengSuanYunChatCompletions(chatcmpl.OpenAIChatCompletions):
"""胜算云 ChatCompletion API 请求器"""
client: openai.AsyncClient
default_config: dict[str, typing.Any] = {
'base_url': 'https://router.shengsuanyun.com/api/v1',
'timeout': 120,
}
async def _req(
self,
args: dict,
extra_body: dict = {},
) -> chat_completion.ChatCompletion:
return await self.client.chat.completions.create(
**args,
extra_body=extra_body,
extra_headers={
'HTTP-Referer': 'https://langbot.app',
'X-Title': 'LangBot',
},
)

File diff suppressed because one or more lines are too long

After

Width:  |  Height:  |  Size: 7.4 KiB

View File

@@ -0,0 +1,38 @@
apiVersion: v1
kind: LLMAPIRequester
metadata:
name: shengsuanyun-chat-completions
label:
en_US: ShengSuanYun
zh_Hans: 胜算云
icon: shengsuanyun.svg
spec:
config:
- name: base_url
label:
en_US: Base URL
zh_Hans: 基础 URL
type: string
required: true
default: "https://router.shengsuanyun.com/api/v1"
- name: args
label:
en_US: Args
zh_Hans: 附加参数
type: object
required: true
default: {}
- name: timeout
label:
en_US: Timeout
zh_Hans: 超时时间
type: int
required: true
default: 120
support_type:
- llm
- text-embedding
execution:
python:
path: ./shengsuanyun.py
attr: ShengSuanYunChatCompletions

View File

@@ -499,7 +499,7 @@ class DifyServiceAPIRunner(runner.RequestRunner):
content = re.sub(r'^\n</think>', '', chunk['answer'])
pending_agent_message += content
think_end = True
elif think_end:
elif think_end or not think_start:
pending_agent_message += chunk['answer']
if think_start:
continue

View File

@@ -1,4 +1,4 @@
semantic_version = 'v4.2.0'
semantic_version = 'v4.2.1'
required_database_version = 5
"""Tag the version of the database schema, used to check if the database needs to be migrated"""