Files
LangBot/pkg/provider/runners/dashscopeapi.py
2025-03-12 19:13:04 +08:00

241 lines
11 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
from __future__ import annotations
import typing
import json
import base64
import re
import dashscope
from .. import runner
from ...core import entities as core_entities
from .. import entities as llm_entities
from ...utils import image
class DashscopeAPIError(Exception):
"""Dashscope API 请求失败"""
def __init__(self, message: str):
self.message = message
super().__init__(self.message)
@runner.runner_class("dashscope-app-api")
class DashScopeAPIRunner(runner.RequestRunner):
"阿里云百炼DashsscopeAPI对话请求器"
# 运行器内部使用的配置
app_type: str # 应用类型
app_id: str # 应用ID
api_key: str # API Key
references_quote: str # 引用资料提示当展示回答来源功能开启时这个变量会作为引用资料名前的提示可在provider.json中配置
biz_params: dict = {} # 工作流应用参数(仅在工作流应用中生效)
async def initialize(self):
"""初始化"""
valid_app_types = ["agent", "workflow"]
self.app_type = self.ap.provider_cfg.data["dashscope-app-api"]["app-type"]
#检查配置文件中使用的应用类型是否支持
if (self.app_type not in valid_app_types):
raise DashscopeAPIError(
f"不支持的 Dashscope 应用类型: {self.app_type}"
)
#初始化Dashscope 参数配置
self.app_id = self.ap.provider_cfg.data["dashscope-app-api"][self.app_type]["app-id"]
self.api_key = self.ap.provider_cfg.data["dashscope-app-api"]["api-key"]
self.references_quote = self.ap.provider_cfg.data["dashscope-app-api"][self.app_type]["references_quote"]
self.biz_params = self.ap.provider_cfg.data["dashscope-app-api"]["workflow"]["biz_params"]
def _replace_references(self, text, references_dict):
"""阿里云百炼平台的自定义应用支持资料引用,此函数可以将引用标签替换为参考资料"""
# 匹配 <ref>[index_id]</ref> 形式的字符串
pattern = re.compile(r'<ref>\[(.*?)\]</ref>')
def replacement(match):
# 获取引用编号
ref_key = match.group(1)
if ref_key in references_dict:
# 如果有对应的参考资料按照provider.json中的reference_quote返回提示来自哪个参考资料文件
return f"({self.references_quote} {references_dict[ref_key]})"
else:
# 如果没有对应的参考资料,保留原样
return match.group(0)
# 使用 re.sub() 进行替换
return pattern.sub(replacement, text)
async def _preprocess_user_message(
self, query: core_entities.Query
) -> tuple[str, list[str]]:
"""预处理用户消息,提取纯文本,阿里云提供的上传文件方法过于复杂,暂不支持上传文件(包括图片)"""
plain_text = ""
image_ids = []
if isinstance(query.user_message.content, list):
for ce in query.user_message.content:
if ce.type == "text":
plain_text += ce.text
# 暂时不支持上传图片,保留代码以便后续扩展
# elif ce.type == "image_base64":
# image_b64, image_format = await image.extract_b64_and_format(ce.image_base64)
# file_bytes = base64.b64decode(image_b64)
# file = ("img.png", file_bytes, f"image/{image_format}")
# file_upload_resp = await self.dify_client.upload_file(
# file,
# f"{query.session.launcher_type.value}_{query.session.launcher_id}",
# )
# image_id = file_upload_resp["id"]
# image_ids.append(image_id)
elif isinstance(query.user_message.content, str):
plain_text = query.user_message.content
return plain_text, image_ids
async def _agent_messages(
self, query: core_entities.Query
) -> typing.AsyncGenerator[llm_entities.Message, None]:
"""Dashscope 智能体对话请求"""
#局部变量
chunk = None # 流式传输的块
pending_content = "" # 待处理的Agent输出内容
references_dict = {} # 用于存储引用编号和对应的参考资料
plain_text = "" # 用户输入的纯文本信息
image_ids = [] # 用户输入的图片ID列表 (暂不支持)
plain_text, image_ids = await self._preprocess_user_message(query)
#发送对话请求
response = dashscope.Application.call(
api_key=self.api_key, # 智能体应用的API Key
app_id=self.app_id, # 智能体应用的ID
prompt=plain_text, # 用户输入的文本信息
stream=True, # 流式输出
incremental_output=True, # 增量输出,使用流式输出需要开启增量输出
session_id=query.session.using_conversation.uuid, # 会话ID用于多轮对话
# rag_options={ # 主要用于文件交互,暂不支持
# "session_file_ids": ["FILE_ID1"], # FILE_ID1 替换为实际的临时文件ID,逗号隔开多个
# }
)
for chunk in response:
if chunk.get("status_code") != 200:
raise DashscopeAPIError(
f"Dashscope API 请求失败: status_code={chunk.get('status_code')} message={chunk.get('message')} request_id={chunk.get('request_id')} "
)
if not chunk:
continue
#获取流式传输的output
stream_output = chunk.get("output", {})
if stream_output.get("text") is not None:
pending_content += stream_output.get("text")
#保存当前会话的session_id用于下次对话的语境
query.session.using_conversation.uuid = stream_output.get("session_id")
#获取模型传出的参考资料列表
references_dict_list = stream_output.get("doc_references", [])
#从模型传出的参考资料信息中提取用于替换的字典
if references_dict_list is not None:
for doc in references_dict_list:
if doc.get("index_id") is not None:
references_dict[doc.get("index_id")] = doc.get("doc_name")
#将参考资料替换到文本中
pending_content = self._replace_references(pending_content, references_dict)
yield llm_entities.Message(
role="assistant",
content=pending_content,
)
async def _workflow_messages(
self, query: core_entities.Query
) -> typing.AsyncGenerator[llm_entities.Message, None]:
"""Dashscope 工作流对话请求"""
#局部变量
chunk = None # 流式传输的块
pending_content = "" # 待处理的Agent输出内容
references_dict = {} # 用于存储引用编号和对应的参考资料
plain_text = "" # 用户输入的纯文本信息
image_ids = [] # 用户输入的图片ID列表 (暂不支持)
plain_text, image_ids = await self._preprocess_user_message(query)
biz_params = {}
biz_params.update(self.biz_params)
biz_params.update(query.variables)
#发送对话请求
response = dashscope.Application.call(
api_key=self.api_key, # 智能体应用的API Key
app_id=self.app_id, # 智能体应用的ID
prompt=plain_text, # 用户输入的文本信息
stream=True, # 流式输出
incremental_output=True, # 增量输出,使用流式输出需要开启增量输出
session_id=query.session.using_conversation.uuid, # 会话ID用于多轮对话
biz_params=biz_params, # 工作流应用的自定义输入参数传递
# rag_options={ # 主要用于文件交互,暂不支持
# "session_file_ids": ["FILE_ID1"], # FILE_ID1 替换为实际的临时文件ID,逗号隔开多个
# }
)
#处理API返回的流式输出
for chunk in response:
if chunk.get("status_code") != 200:
raise DashscopeAPIError(
f"Dashscope API 请求失败: status_code={chunk.get('status_code')} message={chunk.get('message')} request_id={chunk.get('request_id')} "
)
if not chunk:
continue
#获取流式传输的output
stream_output = chunk.get("output", {})
if stream_output.get("text") is not None:
pending_content += stream_output.get("text")
#保存当前会话的session_id用于下次对话的语境
query.session.using_conversation.uuid = stream_output.get("session_id")
#获取模型传出的参考资料列表
references_dict_list = stream_output.get("doc_references", [])
#从模型传出的参考资料信息中提取用于替换的字典
if references_dict_list is not None:
for doc in references_dict_list:
if doc.get("index_id") is not None:
references_dict[doc.get("index_id")] = doc.get("doc_name")
#将参考资料替换到文本中
pending_content = self._replace_references(pending_content, references_dict)
yield llm_entities.Message(
role="assistant",
content=pending_content,
)
async def run(
self, query: core_entities.Query
) -> typing.AsyncGenerator[llm_entities.Message, None]:
"""运行"""
if self.ap.provider_cfg.data["dashscope-app-api"]["app-type"] == "agent":
async for msg in self._agent_messages(query):
yield msg
elif self.ap.provider_cfg.data["dashscope-app-api"]["app-type"] == "workflow":
async for msg in self._workflow_messages(query):
yield msg
else:
raise DashscopeAPIError(
f"不支持的 Dashscope 应用类型: {self.ap.provider_cfg.data['dashscope-app-api']['app-type']}"
)