Files
LangBot/docker/README_K8S.md
Copilot 43553e2c7d feat: Add Kubernetes deployment configuration for cluster deployments (#1779)
* Initial plan

* feat: Add Kubernetes deployment configuration and guide

Co-authored-by: RockChinQ <45992437+RockChinQ@users.noreply.github.com>

* feat: Add test script and update docker-compose with k8s reference

Co-authored-by: RockChinQ <45992437+RockChinQ@users.noreply.github.com>

* doc: add k8s deployment doc in README

---------

Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: RockChinQ <45992437+RockChinQ@users.noreply.github.com>
Co-authored-by: Junyan Qin <rockchinq@gmail.com>
2025-11-14 11:25:11 +08:00

630 lines
14 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# LangBot Kubernetes 部署指南 / Kubernetes Deployment Guide
[简体中文](#简体中文) | [English](#english)
---
## 简体中文
### 概述
本指南提供了在 Kubernetes 集群中部署 LangBot 的完整步骤。Kubernetes 部署配置基于 `docker-compose.yaml`,适用于生产环境的容器化部署。
### 前置要求
- Kubernetes 集群(版本 1.19+
- `kubectl` 命令行工具已配置并可访问集群
- 集群中有可用的存储类StorageClass用于持久化存储可选但推荐
- 至少 2 vCPU 和 4GB RAM 的可用资源
### 架构说明
Kubernetes 部署包含以下组件:
1. **langbot**: 主应用服务
- 提供 Web UI端口 5300
- 处理平台 webhook端口 2280-2290
- 数据持久化卷
2. **langbot-plugin-runtime**: 插件运行时服务
- WebSocket 通信(端口 5400
- 插件数据持久化卷
3. **持久化存储**:
- `langbot-data`: LangBot 主数据
- `langbot-plugins`: 插件文件
- `langbot-plugin-runtime-data`: 插件运行时数据
### 快速开始
#### 1. 下载部署文件
```bash
# 克隆仓库
git clone https://github.com/langbot-app/LangBot
cd LangBot/docker
# 或直接下载 kubernetes.yaml
wget https://raw.githubusercontent.com/langbot-app/LangBot/main/docker/kubernetes.yaml
```
#### 2. 部署到 Kubernetes
```bash
# 应用所有配置
kubectl apply -f kubernetes.yaml
# 检查部署状态
kubectl get all -n langbot
# 查看 Pod 日志
kubectl logs -n langbot -l app=langbot -f
```
#### 3. 访问 LangBot
默认情况下LangBot 服务使用 ClusterIP 类型,只能在集群内部访问。您可以选择以下方式之一来访问:
**选项 A: 端口转发(推荐用于测试)**
```bash
kubectl port-forward -n langbot svc/langbot 5300:5300
```
然后访问 http://localhost:5300
**选项 B: NodePort适用于开发环境**
编辑 `kubernetes.yaml`,取消注释 NodePort Service 部分,然后:
```bash
kubectl apply -f kubernetes.yaml
# 获取节点 IP
kubectl get nodes -o wide
# 访问 http://<NODE_IP>:30300
```
**选项 C: LoadBalancer适用于云环境**
编辑 `kubernetes.yaml`,取消注释 LoadBalancer Service 部分,然后:
```bash
kubectl apply -f kubernetes.yaml
# 获取外部 IP
kubectl get svc -n langbot langbot-loadbalancer
# 访问 http://<EXTERNAL_IP>
```
**选项 D: Ingress推荐用于生产环境**
确保集群中已安装 Ingress Controller如 nginx-ingress然后
1. 编辑 `kubernetes.yaml` 中的 Ingress 配置
2. 修改域名为您的实际域名
3. 应用配置:
```bash
kubectl apply -f kubernetes.yaml
# 访问 http://langbot.yourdomain.com
```
### 配置说明
#### 环境变量
`ConfigMap` 中配置环境变量:
```yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: langbot-config
namespace: langbot
data:
TZ: "Asia/Shanghai" # 修改为您的时区
```
#### 存储配置
默认使用动态存储分配。如果您有特定的 StorageClass请在 PVC 中指定:
```yaml
spec:
storageClassName: your-storage-class-name
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
```
#### 资源限制
根据您的需求调整资源限制:
```yaml
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "4Gi"
cpu: "2000m"
```
### 常用操作
#### 查看日志
```bash
# 查看 LangBot 主服务日志
kubectl logs -n langbot -l app=langbot -f
# 查看插件运行时日志
kubectl logs -n langbot -l app=langbot-plugin-runtime -f
```
#### 重启服务
```bash
# 重启 LangBot
kubectl rollout restart deployment/langbot -n langbot
# 重启插件运行时
kubectl rollout restart deployment/langbot-plugin-runtime -n langbot
```
#### 更新镜像
```bash
# 更新到最新版本
kubectl set image deployment/langbot -n langbot langbot=rockchin/langbot:latest
kubectl set image deployment/langbot-plugin-runtime -n langbot langbot-plugin-runtime=rockchin/langbot:latest
# 检查更新状态
kubectl rollout status deployment/langbot -n langbot
```
#### 扩容(不推荐)
注意:由于 LangBot 使用 ReadWriteOnce 的持久化存储,不支持多副本扩容。如需高可用,请考虑使用 ReadWriteMany 存储或其他架构方案。
#### 备份数据
```bash
# 备份 PVC 数据
kubectl exec -n langbot -it <langbot-pod-name> -- tar czf /tmp/backup.tar.gz /app/data
kubectl cp langbot/<langbot-pod-name>:/tmp/backup.tar.gz ./backup.tar.gz
```
### 卸载
```bash
# 删除所有资源(保留 PVC
kubectl delete deployment,service,configmap -n langbot --all
# 删除 PVC会删除数据
kubectl delete pvc -n langbot --all
# 删除命名空间
kubectl delete namespace langbot
```
### 故障排查
#### Pod 无法启动
```bash
# 查看 Pod 状态
kubectl get pods -n langbot
# 查看详细信息
kubectl describe pod -n langbot <pod-name>
# 查看事件
kubectl get events -n langbot --sort-by='.lastTimestamp'
```
#### 存储问题
```bash
# 检查 PVC 状态
kubectl get pvc -n langbot
# 检查 PV
kubectl get pv
```
#### 网络访问问题
```bash
# 检查 Service
kubectl get svc -n langbot
# 检查端口转发
kubectl port-forward -n langbot svc/langbot 5300:5300
```
### 生产环境建议
1. **使用特定版本标签**:避免使用 `latest` 标签,使用具体版本号如 `rockchin/langbot:v1.0.0`
2. **配置资源限制**:根据实际负载调整 CPU 和内存限制
3. **使用 Ingress + TLS**:配置 HTTPS 访问和证书管理
4. **配置监控和告警**:集成 Prometheus、Grafana 等监控工具
5. **定期备份**:配置自动备份策略保护数据
6. **使用专用 StorageClass**:为生产环境配置高性能存储
7. **配置亲和性规则**:确保 Pod 调度到合适的节点
### 高级配置
#### 使用 Secrets 管理敏感信息
如果需要配置 API 密钥等敏感信息:
```yaml
apiVersion: v1
kind: Secret
metadata:
name: langbot-secrets
namespace: langbot
type: Opaque
data:
api_key: <base64-encoded-value>
```
然后在 Deployment 中引用:
```yaml
env:
- name: API_KEY
valueFrom:
secretKeyRef:
name: langbot-secrets
key: api_key
```
#### 配置水平自动扩缩容HPA
注意:需要确保使用 ReadWriteMany 存储类型
```yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: langbot-hpa
namespace: langbot
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: langbot
minReplicas: 1
maxReplicas: 3
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
```
### 参考资源
- [LangBot 官方文档](https://docs.langbot.app)
- [Docker 部署文档](https://docs.langbot.app/zh/deploy/langbot/docker.html)
- [Kubernetes 官方文档](https://kubernetes.io/docs/)
---
## English
### Overview
This guide provides complete steps for deploying LangBot in a Kubernetes cluster. The Kubernetes deployment configuration is based on `docker-compose.yaml` and is suitable for production containerized deployments.
### Prerequisites
- Kubernetes cluster (version 1.19+)
- `kubectl` command-line tool configured with cluster access
- Available StorageClass in the cluster for persistent storage (optional but recommended)
- At least 2 vCPU and 4GB RAM of available resources
### Architecture
The Kubernetes deployment includes the following components:
1. **langbot**: Main application service
- Provides Web UI (port 5300)
- Handles platform webhooks (ports 2280-2290)
- Data persistence volume
2. **langbot-plugin-runtime**: Plugin runtime service
- WebSocket communication (port 5400)
- Plugin data persistence volume
3. **Persistent Storage**:
- `langbot-data`: LangBot main data
- `langbot-plugins`: Plugin files
- `langbot-plugin-runtime-data`: Plugin runtime data
### Quick Start
#### 1. Download Deployment Files
```bash
# Clone repository
git clone https://github.com/langbot-app/LangBot
cd LangBot/docker
# Or download kubernetes.yaml directly
wget https://raw.githubusercontent.com/langbot-app/LangBot/main/docker/kubernetes.yaml
```
#### 2. Deploy to Kubernetes
```bash
# Apply all configurations
kubectl apply -f kubernetes.yaml
# Check deployment status
kubectl get all -n langbot
# View Pod logs
kubectl logs -n langbot -l app=langbot -f
```
#### 3. Access LangBot
By default, LangBot service uses ClusterIP type, accessible only within the cluster. Choose one of the following methods to access:
**Option A: Port Forwarding (Recommended for testing)**
```bash
kubectl port-forward -n langbot svc/langbot 5300:5300
```
Then visit http://localhost:5300
**Option B: NodePort (Suitable for development)**
Edit `kubernetes.yaml`, uncomment the NodePort Service section, then:
```bash
kubectl apply -f kubernetes.yaml
# Get node IP
kubectl get nodes -o wide
# Visit http://<NODE_IP>:30300
```
**Option C: LoadBalancer (Suitable for cloud environments)**
Edit `kubernetes.yaml`, uncomment the LoadBalancer Service section, then:
```bash
kubectl apply -f kubernetes.yaml
# Get external IP
kubectl get svc -n langbot langbot-loadbalancer
# Visit http://<EXTERNAL_IP>
```
**Option D: Ingress (Recommended for production)**
Ensure an Ingress Controller (e.g., nginx-ingress) is installed in the cluster, then:
1. Edit the Ingress configuration in `kubernetes.yaml`
2. Change the domain to your actual domain
3. Apply configuration:
```bash
kubectl apply -f kubernetes.yaml
# Visit http://langbot.yourdomain.com
```
### Configuration
#### Environment Variables
Configure environment variables in ConfigMap:
```yaml
apiVersion: v1
kind: ConfigMap
metadata:
name: langbot-config
namespace: langbot
data:
TZ: "Asia/Shanghai" # Change to your timezone
```
#### Storage Configuration
Uses dynamic storage provisioning by default. If you have a specific StorageClass, specify it in PVC:
```yaml
spec:
storageClassName: your-storage-class-name
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 10Gi
```
#### Resource Limits
Adjust resource limits based on your needs:
```yaml
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "4Gi"
cpu: "2000m"
```
### Common Operations
#### View Logs
```bash
# View LangBot main service logs
kubectl logs -n langbot -l app=langbot -f
# View plugin runtime logs
kubectl logs -n langbot -l app=langbot-plugin-runtime -f
```
#### Restart Services
```bash
# Restart LangBot
kubectl rollout restart deployment/langbot -n langbot
# Restart plugin runtime
kubectl rollout restart deployment/langbot-plugin-runtime -n langbot
```
#### Update Images
```bash
# Update to latest version
kubectl set image deployment/langbot -n langbot langbot=rockchin/langbot:latest
kubectl set image deployment/langbot-plugin-runtime -n langbot langbot-plugin-runtime=rockchin/langbot:latest
# Check update status
kubectl rollout status deployment/langbot -n langbot
```
#### Scaling (Not Recommended)
Note: Due to LangBot using ReadWriteOnce persistent storage, multi-replica scaling is not supported. For high availability, consider using ReadWriteMany storage or alternative architectures.
#### Backup Data
```bash
# Backup PVC data
kubectl exec -n langbot -it <langbot-pod-name> -- tar czf /tmp/backup.tar.gz /app/data
kubectl cp langbot/<langbot-pod-name>:/tmp/backup.tar.gz ./backup.tar.gz
```
### Uninstall
```bash
# Delete all resources (keep PVCs)
kubectl delete deployment,service,configmap -n langbot --all
# Delete PVCs (will delete data)
kubectl delete pvc -n langbot --all
# Delete namespace
kubectl delete namespace langbot
```
### Troubleshooting
#### Pods Not Starting
```bash
# Check Pod status
kubectl get pods -n langbot
# View detailed information
kubectl describe pod -n langbot <pod-name>
# View events
kubectl get events -n langbot --sort-by='.lastTimestamp'
```
#### Storage Issues
```bash
# Check PVC status
kubectl get pvc -n langbot
# Check PV
kubectl get pv
```
#### Network Access Issues
```bash
# Check Service
kubectl get svc -n langbot
# Test port forwarding
kubectl port-forward -n langbot svc/langbot 5300:5300
```
### Production Recommendations
1. **Use specific version tags**: Avoid using `latest` tag, use specific version like `rockchin/langbot:v1.0.0`
2. **Configure resource limits**: Adjust CPU and memory limits based on actual load
3. **Use Ingress + TLS**: Configure HTTPS access and certificate management
4. **Configure monitoring and alerts**: Integrate monitoring tools like Prometheus, Grafana
5. **Regular backups**: Configure automated backup strategy to protect data
6. **Use dedicated StorageClass**: Configure high-performance storage for production
7. **Configure affinity rules**: Ensure Pods are scheduled to appropriate nodes
### Advanced Configuration
#### Using Secrets for Sensitive Information
If you need to configure sensitive information like API keys:
```yaml
apiVersion: v1
kind: Secret
metadata:
name: langbot-secrets
namespace: langbot
type: Opaque
data:
api_key: <base64-encoded-value>
```
Then reference in Deployment:
```yaml
env:
- name: API_KEY
valueFrom:
secretKeyRef:
name: langbot-secrets
key: api_key
```
#### Configure Horizontal Pod Autoscaling (HPA)
Note: Requires ReadWriteMany storage type
```yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: langbot-hpa
namespace: langbot
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: langbot
minReplicas: 1
maxReplicas: 3
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
```
### References
- [LangBot Official Documentation](https://docs.langbot.app)
- [Docker Deployment Guide](https://docs.langbot.app/zh/deploy/langbot/docker.html)
- [Kubernetes Official Documentation](https://kubernetes.io/docs/)