兼容解析重排序服务返回score字段

This commit is contained in:
Liwx1014
2025-08-28 10:54:01 +08:00
committed by lyingbug
parent fb1cd98392
commit 19c5e242bf
2 changed files with 131 additions and 1 deletions

View File

@@ -2,9 +2,10 @@ package rerank
import (
"context"
"encoding/json"
"fmt"
"strings"
"github.com/Tencent/WeKnora/internal/types"
)
@@ -25,6 +26,33 @@ type RankResult struct {
Document DocumentInfo `json:"document"`
RelevanceScore float64 `json:"relevance_score"`
}
//Handles the RelevanceScore field by checking if RelevanceScore exists first, otherwise falls back to Score field
func (r *RankResult) UnmarshalJSON(data []byte) error {
var temp struct {
Index int `json:"index"`
Document DocumentInfo `json:"document"`
RelevanceScore *float64 `json:"relevance_score"`
Score *float64 `json:"score"`
}
if err := json.Unmarshal(data, &temp); err != nil {
return fmt.Errorf("failed to unmarshal rank result: %w", err)
}
r.Index = temp.Index
r.Document = temp.Document
if temp.RelevanceScore != nil {
r.RelevanceScore = *temp.RelevanceScore
} else if temp.Score != nil {
r.RelevanceScore = *temp.Score
}
return nil
}
type DocumentInfo struct {
Text string `json:"text"`

102
rerank_server_demo.py Normal file
View File

@@ -0,0 +1,102 @@
import torch
import uvicorn
from fastapi import FastAPI
from pydantic import BaseModel, Field
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from typing import List
# --- 1. 定义API的请求和响应数据结构 ---
# 请求体结构保持不变
class RerankRequest(BaseModel):
query: str
documents: List[str]
# --- 修改开始:定义测试用的响应结构,字段名为 "score" ---
# DocumentInfo 结构保持不变
class DocumentInfo(BaseModel):
text: str
# 将原来的 GoRankResult 修改为 TestRankResult
# 核心改动:将 "relevance_score" 字段重命名为 "score"
class TestRankResult(BaseModel):
index: int
document: DocumentInfo
score: float # <--- 【关键修改点】字段名已从 relevance_score 改为 score
# 最终响应体结构,其 "results" 列表包含的是 TestRankResult
class TestFinalResponse(BaseModel):
results: List[TestRankResult]
# --- 修改结束 ---
# --- 2. 加载模型 (在服务启动时执行一次) ---
print("正在加载模型,请稍候...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用的设备: {device}")
try:
# 请确保这里的路径是正确的
model_path = '/data1/home/lwx/work/Download/rerank_model_weight'
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForSequenceClassification.from_pretrained(model_path)
model.to(device)
model.eval()
print("模型加载成功!")
except Exception as e:
print(f"模型加载失败: {e}")
# 在测试环境中,如果模型加载失败,可以考虑退出以避免运行一个无效的服务
exit()
# --- 3. 创建FastAPI应用 ---
app = FastAPI(
title="Reranker API (Test Version)",
description="一个返回 'score' 字段以测试Go客户端兼容性的API服务",
version="1.0.1"
)
# --- 4. 定义API端点 ---
# --- 修改开始:将 response_model 指向新的测试用响应结构 ---
@app.post("/rerank", response_model=TestFinalResponse) # <--- 【关键修改点】response_model 改为 TestFinalResponse
def rerank_endpoint(request: RerankRequest):
# --- 修改结束 ---
pairs = [[request.query, doc] for doc in request.documents]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=1024).to(device)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
# --- 修改开始:按照测试用的结构来构建结果 ---
results = []
for i, (text, score_val) in enumerate(zip(request.documents, scores)):
# 1. 创建嵌套的 document 对象
doc_info = DocumentInfo(text=text)
# 2. 创建 TestRankResult 对象
# 注意字段名index, document, score
test_result = TestRankResult(
index=i,
document=doc_info,
score=score_val.item() # <--- 【关键修改点】赋值给 "score" 字段
)
results.append(test_result)
# 3. 排序 (key 也要相应修改为 score)
sorted_results = sorted(results, key=lambda x: x.score, reverse=True)
# --- 修改结束 ---
# 返回一个字典FastAPI 会根据 response_model (TestFinalResponse) 来验证和序列化它
# 最终生成的 JSON 会是 {"results": [{"index": ..., "document": ..., "score": ...}]}
return {"results": sorted_results}
@app.get("/")
def read_root():
return {"status": "Reranker API (Test Version) is running"}
# --- 5. 启动服务 ---
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)