Files
n8n-workflows/workflow_dashboard.py
Sahiix@1 3c0a92c460 ssd (#10)
* ok

ok

* Refactor README for better structure and readability

Updated README to improve formatting and clarity.

* Initial plan

* Initial plan

* Initial plan

* Initial plan

* Comprehensive deployment infrastructure implementation

Co-authored-by: sahiixx <221578902+sahiixx@users.noreply.github.com>

* Add comprehensive deployment infrastructure - Docker, K8s, CI/CD, scripts

Co-authored-by: sahiixx <221578902+sahiixx@users.noreply.github.com>

* Add files via upload

* Complete deployment implementation - tested and working production deployment

Co-authored-by: sahiixx <221578902+sahiixx@users.noreply.github.com>

* Revert "Implement comprehensive deployment infrastructure for n8n-workflows documentation system"

* Update docker-compose.prod.yml

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

* Update scripts/health-check.sh

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

---------

Co-authored-by: dopeuni444 <sahiixofficial@wgmail.com>
Co-authored-by: copilot-swe-agent[bot] <198982749+Copilot@users.noreply.github.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
2025-09-29 09:31:37 +04:00

311 lines
12 KiB
Python

#!/usr/bin/env python3
"""
Workflow Monitoring Dashboard
Real-time monitoring and analytics for n8n workflows
"""
import json
import os
from pathlib import Path
from datetime import datetime, timedelta
from typing import Dict, List, Any, Optional
from dataclasses import dataclass
import time
@dataclass
class WorkflowStats:
"""Workflow statistics and health metrics"""
name: str
category: str
nodes: int
connections: int
last_modified: datetime
file_size: int
quality_score: int
status: str # active, inactive, error, unknown
execution_count: int = 0
success_rate: float = 0.0
avg_execution_time: float = 0.0
last_execution: Optional[datetime] = None
error_count: int = 0
class WorkflowDashboard:
"""Real-time workflow monitoring dashboard"""
def __init__(self, workflows_dir: str = "workflows"):
self.workflows_dir = Path(workflows_dir)
self.stats: Dict[str, WorkflowStats] = {}
self.categories = {}
self.last_scan = None
def scan_workflows(self) -> Dict[str, Any]:
"""Scan all workflows and collect statistics"""
print("🔍 Scanning workflows for dashboard...")
self.stats = {}
self.categories = {}
total_workflows = 0
total_nodes = 0
total_connections = 0
total_size = 0
for category_path in self.workflows_dir.iterdir():
if category_path.is_dir():
category = category_path.name
self.categories[category] = {
'count': 0,
'nodes': 0,
'connections': 0,
'size': 0,
'active': 0,
'inactive': 0,
'errors': 0
}
for workflow_file in category_path.glob('*.json'):
try:
with open(workflow_file, 'r', encoding='utf-8') as f:
data = json.load(f)
# Get file stats
file_stat = workflow_file.stat()
last_modified = datetime.fromtimestamp(file_stat.st_mtime)
file_size = file_stat.st_size
# Calculate quality score (simplified)
quality_score = self._calculate_quality_score(data)
# Determine status
status = self._determine_status(data, quality_score)
# Create workflow stats
workflow_name = data.get('name', workflow_file.stem)
stats = WorkflowStats(
name=workflow_name,
category=category,
nodes=len(data.get('nodes', [])),
connections=len(data.get('connections', {})),
last_modified=last_modified,
file_size=file_size,
quality_score=quality_score,
status=status
)
self.stats[workflow_name] = stats
# Update category stats
self.categories[category]['count'] += 1
self.categories[category]['nodes'] += stats.nodes
self.categories[category]['connections'] += stats.connections
self.categories[category]['size'] += file_size
if status == 'active':
self.categories[category]['active'] += 1
elif status == 'error':
self.categories[category]['errors'] += 1
else:
self.categories[category]['inactive'] += 1
# Update totals
total_workflows += 1
total_nodes += stats.nodes
total_connections += stats.connections
total_size += file_size
except Exception as e:
print(f"⚠️ Error processing {workflow_file}: {e}")
continue
self.last_scan = datetime.now()
return {
'total_workflows': total_workflows,
'total_nodes': total_nodes,
'total_connections': total_connections,
'total_size_mb': round(total_size / (1024 * 1024), 2),
'categories': self.categories,
'last_scan': self.last_scan.isoformat()
}
def _calculate_quality_score(self, data: Dict) -> int:
"""Calculate quality score for a workflow"""
score = 0
# Basic structure (20 points)
if 'name' in data and data['name']:
score += 5
if 'nodes' in data and data['nodes']:
score += 10
if 'connections' in data and data['connections']:
score += 5
# Node quality (30 points)
nodes = data.get('nodes', [])
if nodes:
score += 10 # Has nodes
if len(nodes) > 5:
score += 10 # Substantial workflow
if len(nodes) > 20:
score += 10 # Complex workflow
# Documentation (20 points)
if 'description' in data and data['description']:
score += 10
if 'tags' in data and data['tags']:
score += 10
# Error handling (15 points)
has_error_handling = any(
node.get('type') in ['ErrorTrigger', 'If', 'Switch']
for node in nodes
)
if has_error_handling:
score += 15
# Best practices (15 points)
has_webhook = any(node.get('type') == 'n8n-nodes-base.webhook' for node in nodes)
has_schedule = any(node.get('type') == 'n8n-nodes-base.cron' for node in nodes)
if has_webhook or has_schedule:
score += 15
return min(score, 100)
def _determine_status(self, data: Dict, quality_score: int) -> str:
"""Determine workflow status"""
if quality_score >= 90:
return 'active'
elif quality_score >= 70:
return 'inactive'
else:
return 'error'
def get_dashboard_data(self) -> Dict[str, Any]:
"""Get comprehensive dashboard data"""
scan_data = self.scan_workflows()
# Calculate health metrics
active_workflows = sum(1 for stats in self.stats.values() if stats.status == 'active')
error_workflows = sum(1 for stats in self.stats.values() if stats.status == 'error')
inactive_workflows = sum(1 for stats in self.stats.values() if stats.status == 'inactive')
total_workflows = len(self.stats)
health_percentage = (active_workflows / total_workflows * 100) if total_workflows > 0 else 0
# Top categories by workflow count
top_categories = sorted(
self.categories.items(),
key=lambda x: x[1]['count'],
reverse=True
)[:5]
# Recent activity (workflows modified in last 7 days)
recent_cutoff = datetime.now() - timedelta(days=7)
recent_workflows = [
stats for stats in self.stats.values()
if stats.last_modified > recent_cutoff
]
return {
'overview': {
'total_workflows': total_workflows,
'active_workflows': active_workflows,
'inactive_workflows': inactive_workflows,
'error_workflows': error_workflows,
'health_percentage': round(health_percentage, 1),
'total_nodes': scan_data['total_nodes'],
'total_connections': scan_data['total_connections'],
'total_size_mb': scan_data['total_size_mb']
},
'categories': top_categories,
'recent_activity': {
'count': len(recent_workflows),
'workflows': [
{
'name': wf.name,
'category': wf.category,
'last_modified': wf.last_modified.isoformat(),
'quality_score': wf.quality_score
}
for wf in recent_workflows[:10] # Top 10 recent
]
},
'quality_distribution': self._get_quality_distribution(),
'last_scan': self.last_scan.isoformat() if self.last_scan else None
}
def _get_quality_distribution(self) -> Dict[str, int]:
"""Get quality score distribution"""
distribution = {
'excellent (90-100)': 0,
'good (70-89)': 0,
'fair (50-69)': 0,
'poor (0-49)': 0
}
for stats in self.stats.values():
if stats.quality_score >= 90:
distribution['excellent (90-100)'] += 1
elif stats.quality_score >= 70:
distribution['good (70-89)'] += 1
elif stats.quality_score >= 50:
distribution['fair (50-69)'] += 1
else:
distribution['poor (0-49)'] += 1
return distribution
def display_dashboard(self):
"""Display the dashboard in console"""
data = self.get_dashboard_data()
print("\n" + "="*80)
print("🚀 N8N WORKFLOW DASHBOARD")
print("="*80)
# Overview
overview = data['overview']
print(f"\n📊 OVERVIEW:")
print(f" Total Workflows: {overview['total_workflows']}")
print(f" Active: {overview['active_workflows']} ({overview['health_percentage']}%)")
print(f" Inactive: {overview['inactive_workflows']}")
print(f" Errors: {overview['error_workflows']}")
print(f" Total Nodes: {overview['total_nodes']:,}")
print(f" Total Connections: {overview['total_connections']:,}")
print(f" Total Size: {overview['total_size_mb']} MB")
# Quality Distribution
print(f"\n🎯 QUALITY DISTRIBUTION:")
for range_name, count in data['quality_distribution'].items():
percentage = (count / overview['total_workflows'] * 100) if overview['total_workflows'] > 0 else 0
print(f" {range_name}: {count} ({percentage:.1f}%)")
# Top Categories
print(f"\n📁 TOP CATEGORIES:")
for category, stats in data['categories']:
print(f" {category}: {stats['count']} workflows, {stats['nodes']} nodes")
# Recent Activity
recent = data['recent_activity']
print(f"\n🕒 RECENT ACTIVITY (Last 7 days): {recent['count']} workflows modified")
for wf in recent['workflows'][:5]:
print(f"{wf['name']} ({wf['category']}) - Score: {wf['quality_score']}")
print(f"\n🔄 Last Scan: {data['last_scan']}")
print("="*80)
def main():
"""Main dashboard function"""
dashboard = WorkflowDashboard()
dashboard.display_dashboard()
# Save dashboard data to file
data = dashboard.get_dashboard_data()
with open('dashboard_data.json', 'w') as f:
json.dump(data, f, indent=2, default=str)
print(f"\n💾 Dashboard data saved to: dashboard_data.json")
if __name__ == "__main__":
main()