mirror of
https://github.com/langbot-app/LangBot.git
synced 2025-11-25 03:15:06 +08:00
Compare commits
241 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
9c1f4e1690 | ||
|
|
865ee2ca01 | ||
|
|
c2264080bd | ||
|
|
67b622d5a6 | ||
|
|
a534c02d75 | ||
|
|
da890d3074 | ||
|
|
3049aa7a96 | ||
|
|
e66f674968 | ||
|
|
dd0e0abdc4 | ||
|
|
13f6396eb4 | ||
|
|
7bbaa4fcad | ||
|
|
e931d5eb88 | ||
|
|
4bbfa2f1d7 | ||
|
|
dd30d08c68 | ||
|
|
8ccda10045 | ||
|
|
46fbfbefea | ||
|
|
8f863cf530 | ||
|
|
2351193c51 | ||
|
|
8c87a47f5a | ||
|
|
b8b9a37825 | ||
|
|
13dd6fcee3 | ||
|
|
29f0075bd8 | ||
|
|
8a96ffbcc0 | ||
|
|
67f68d8101 | ||
|
|
ad59d92cef | ||
|
|
85f97860c5 | ||
|
|
8fd21e76f2 | ||
|
|
cc83ddbe21 | ||
|
|
99fcde1586 | ||
|
|
eab08dfbf3 | ||
|
|
dbf0200cca | ||
|
|
ac44f35299 | ||
|
|
d6a5fdd911 | ||
|
|
4668db716a | ||
|
|
f7cd6b76f2 | ||
|
|
b6d47187f5 | ||
|
|
051fffd41e | ||
|
|
c5480078b3 | ||
|
|
e744e9c4ef | ||
|
|
9f22b8b585 | ||
|
|
27cee0a4e1 | ||
|
|
6d35fc408c | ||
|
|
0607a0fa5c | ||
|
|
ed57d2fafa | ||
|
|
39ef92676b | ||
|
|
7301476228 | ||
|
|
457cc3eecd | ||
|
|
a381069bcc | ||
|
|
146c38e64c | ||
|
|
763c41729e | ||
|
|
0021efebd7 | ||
|
|
5f18a1b13a | ||
|
|
0124448479 | ||
|
|
e76bc80e51 | ||
|
|
a27560e804 | ||
|
|
46452de7b5 | ||
|
|
2aef139577 | ||
|
|
03b11481ed | ||
|
|
8c5cb71812 | ||
|
|
7c59bc1ce5 | ||
|
|
eede354d3b | ||
|
|
eb7b5dcc25 | ||
|
|
47e9ce96fc | ||
|
|
4e95bc542c | ||
|
|
e4f321ea7a | ||
|
|
246eb71b75 | ||
|
|
261f50b8ec | ||
|
|
9736d0708a | ||
|
|
02dbe80d2f | ||
|
|
0f239ace17 | ||
|
|
3a82ae8da5 | ||
|
|
c33c9eaab0 | ||
|
|
87f626f3cc | ||
|
|
e88302f1b4 | ||
|
|
5597dffaeb | ||
|
|
7f25d61531 | ||
|
|
15e524c6e6 | ||
|
|
4a1d033ee9 | ||
|
|
8adc88a8c0 | ||
|
|
a62b38eda7 | ||
|
|
fcef784180 | ||
|
|
c3ed4ef6a1 | ||
|
|
b9f768af25 | ||
|
|
47ff883fc7 | ||
|
|
68906c43ff | ||
|
|
c6deed4e6e | ||
|
|
b45cc59322 | ||
|
|
c33a96823b | ||
|
|
d3ab16761d | ||
|
|
70f23f24b0 | ||
|
|
00a8410c94 | ||
|
|
2a17e89a99 | ||
|
|
8fe0992c15 | ||
|
|
a9776b7b53 | ||
|
|
074d359c8e | ||
|
|
7728b4262b | ||
|
|
4905b5a738 | ||
|
|
43a259a1ae | ||
|
|
cffe493db0 | ||
|
|
0042629bf0 | ||
|
|
a7d638cc9a | ||
|
|
f84a79bf74 | ||
|
|
f5a0cb9175 | ||
|
|
f9a5507029 | ||
|
|
5ce32d2f04 | ||
|
|
4908996cac | ||
|
|
ee545a163f | ||
|
|
6e0e5802cc | ||
|
|
0d53843230 | ||
|
|
b65670cd1a | ||
|
|
ba4b5255a2 | ||
|
|
d60af2b451 | ||
|
|
44ac8b2b63 | ||
|
|
b70001c579 | ||
|
|
4a8f5516f6 | ||
|
|
48d11540ae | ||
|
|
84129e3339 | ||
|
|
377d455ec1 | ||
|
|
52280d7a05 | ||
|
|
0ce81a2df2 | ||
|
|
d9a2bb9a06 | ||
|
|
cb88da7f02 | ||
|
|
5560a4f52d | ||
|
|
e4d951b174 | ||
|
|
6e08bf71c9 | ||
|
|
daaf4b54ef | ||
|
|
3291266f5d | ||
|
|
307f6acd8c | ||
|
|
f1ac9c77e6 | ||
|
|
b434a4e3d7 | ||
|
|
2f209cd59f | ||
|
|
0f585fd5ef | ||
|
|
a152dece9a | ||
|
|
d3b31f7027 | ||
|
|
c00f05fca4 | ||
|
|
92c3a86356 | ||
|
|
341fdc409d | ||
|
|
ebd542f592 | ||
|
|
194b2d9814 | ||
|
|
7aed5cf1ed | ||
|
|
abc88c4979 | ||
|
|
3fa38f71f1 | ||
|
|
d651d956d6 | ||
|
|
6754666845 | ||
|
|
08e6f46b19 | ||
|
|
8f8c8ff367 | ||
|
|
63ec2a8c34 | ||
|
|
f58c8497c3 | ||
|
|
1497fdae56 | ||
|
|
10a3cb40e1 | ||
|
|
dd1ec15a39 | ||
|
|
ea51cec57e | ||
|
|
28ce986a8c | ||
|
|
489b145606 | ||
|
|
5e92bffaa6 | ||
|
|
277d1b0e30 | ||
|
|
13f4ed8d2c | ||
|
|
91cb5ca36c | ||
|
|
c34d54a6cb | ||
|
|
2d1737da1f | ||
|
|
adb0bf2473 | ||
|
|
a1b8b9d47b | ||
|
|
8df14bf9d9 | ||
|
|
c98d265a1e | ||
|
|
4e6782a6b7 | ||
|
|
5541e9e6d0 | ||
|
|
878ab0ef6b | ||
|
|
b61bd36b14 | ||
|
|
bb672d8f46 | ||
|
|
ba1a26543b | ||
|
|
cb868ee7b2 | ||
|
|
5dd5cb12ad | ||
|
|
2dfa83ff22 | ||
|
|
27bb4e1253 | ||
|
|
45afdbdfbb | ||
|
|
11e52a3ade | ||
|
|
4cbbe9e000 | ||
|
|
e986a0acaf | ||
|
|
333ec346ef | ||
|
|
2f2db4d445 | ||
|
|
e31883547d | ||
|
|
88c0066b06 | ||
|
|
f731115805 | ||
|
|
67bc065ccd | ||
|
|
d15df3338f | ||
|
|
c74cf38e9f | ||
|
|
0e68a922bd | ||
|
|
4e1d81c9f8 | ||
|
|
199164fc4b | ||
|
|
c9c26213df | ||
|
|
b7c57104c4 | ||
|
|
0be08d8882 | ||
|
|
cbe297dc59 | ||
|
|
de76fed25a | ||
|
|
301509b1db | ||
|
|
a10e61735d | ||
|
|
1ef0193028 | ||
|
|
1e85d02ae4 | ||
|
|
d78a329aa9 | ||
|
|
234b61e2f8 | ||
|
|
9f43097361 | ||
|
|
f395cac893 | ||
|
|
fe122281fd | ||
|
|
6d788cadbc | ||
|
|
a79a22a74d | ||
|
|
2ed3b68790 | ||
|
|
bd9331ce62 | ||
|
|
14c161b733 | ||
|
|
815cdf8b4a | ||
|
|
7d5503dab2 | ||
|
|
9ba1ad5bd3 | ||
|
|
367d04d0f0 | ||
|
|
75c3ddde19 | ||
|
|
ac03a2dceb | ||
|
|
cd25340826 | ||
|
|
ebd8e014c6 | ||
|
|
bef0d73e83 | ||
|
|
8d28ace252 | ||
|
|
39c062f73e | ||
|
|
0e5c9e19e1 | ||
|
|
c5b62b6ba3 | ||
|
|
bbf583ddb5 | ||
|
|
22ef1a399e | ||
|
|
0733f8878f | ||
|
|
f36a61dbb2 | ||
|
|
6d8936bd74 | ||
|
|
d2b93b3296 | ||
|
|
552fee9bac | ||
|
|
34fe8b324d | ||
|
|
c4671fbf1c | ||
|
|
4bcc06c955 | ||
|
|
348f6d9eaa | ||
|
|
157ffdc34c | ||
|
|
c81d5a1a49 | ||
|
|
68cdd163d3 | ||
|
|
4005a8a3e2 | ||
|
|
542409d48d | ||
|
|
3c6e858c35 | ||
|
|
8670ae82a3 | ||
|
|
48c9d66ab8 | ||
|
|
0eac9135c0 |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -42,4 +42,5 @@ botpy.log*
|
||||
test.py
|
||||
/web_ui
|
||||
.venv/
|
||||
uv.lock
|
||||
uv.lock
|
||||
/test
|
||||
47
README.md
47
README.md
@@ -6,14 +6,16 @@
|
||||
|
||||
<div align="center">
|
||||
|
||||
简体中文 / [English](README_EN.md) / [日本語](README_JP.md) / (PR for your language)
|
||||
<a href="https://hellogithub.com/repository/langbot-app/LangBot" target="_blank"><img src="https://abroad.hellogithub.com/v1/widgets/recommend.svg?rid=5ce8ae2aa4f74316bf393b57b952433c&claim_uid=gtmc6YWjMZkT21R" alt="Featured|HelloGitHub" style="width: 250px; height: 54px;" width="250" height="54" /></a>
|
||||
|
||||
[English](README_EN.md) / 简体中文 / [繁體中文](README_TW.md) / [日本語](README_JP.md) / (PR for your language)
|
||||
|
||||
[](https://discord.gg/wdNEHETs87)
|
||||
[](https://qm.qq.com/q/JLi38whHum)
|
||||
[](https://deepwiki.com/langbot-app/LangBot)
|
||||
[](https://github.com/langbot-app/LangBot/releases/latest)
|
||||
<img src="https://img.shields.io/badge/python-3.10 ~ 3.13 -blue.svg" alt="python">
|
||||
[](https://gitcode.com/langbot-app/LangBot)
|
||||
[](https://gitcode.com/RockChinQ/LangBot)
|
||||
|
||||
<a href="https://langbot.app">项目主页</a> |
|
||||
<a href="https://docs.langbot.app/zh/insight/guide.html">部署文档</a> |
|
||||
@@ -25,12 +27,7 @@
|
||||
|
||||
</p>
|
||||
|
||||
## ✨ 特性
|
||||
|
||||
- 💬 大模型对话、Agent:支持多种大模型,适配群聊和私聊;具有多轮对话、工具调用、多模态能力,并深度适配 [Dify](https://dify.ai)。目前支持 QQ、QQ频道、企业微信、个人微信、飞书、Discord、Telegram 等平台。
|
||||
- 🛠️ 高稳定性、功能完备:原生支持访问控制、限速、敏感词过滤等机制;配置简单,支持多种部署方式。支持多流水线配置,不同机器人用于不同应用场景。
|
||||
- 🧩 插件扩展、活跃社区:支持事件驱动、组件扩展等插件机制;适配 Anthropic [MCP 协议](https://modelcontextprotocol.io/);目前已有数百个插件。
|
||||
- 😻 Web 管理面板:支持通过浏览器管理 LangBot 实例,不再需要手动编写配置文件。
|
||||
LangBot 是一个开源的大语言模型原生即时通信机器人开发平台,旨在提供开箱即用的 IM 机器人开发体验,具有 Agent、RAG、MCP 等多种 LLM 应用功能,适配全球主流即时通信平台,并提供丰富的 API 接口,支持自定义开发。
|
||||
|
||||
## 📦 开始使用
|
||||
|
||||
@@ -64,23 +61,25 @@ docker compose up -d
|
||||
|
||||
直接使用发行版运行,查看文档[手动部署](https://docs.langbot.app/zh/deploy/langbot/manual.html)。
|
||||
|
||||
## 📸 效果展示
|
||||
## 😎 保持更新
|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/bot-page.png" width="450px"/>
|
||||
点击仓库右上角 Star 和 Watch 按钮,获取最新动态。
|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/create-model.png" width="450px"/>
|
||||

|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/edit-pipeline.png" width="450px"/>
|
||||
## ✨ 特性
|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/plugin-market.png" width="450px"/>
|
||||
- 💬 大模型对话、Agent:支持多种大模型,适配群聊和私聊;具有多轮对话、工具调用、多模态能力,自带 RAG(知识库)实现,并深度适配 [Dify](https://dify.ai)。
|
||||
- 🤖 多平台支持:目前支持 QQ、QQ频道、企业微信、个人微信、飞书、Discord、Telegram 等平台。
|
||||
- 🛠️ 高稳定性、功能完备:原生支持访问控制、限速、敏感词过滤等机制;配置简单,支持多种部署方式。支持多流水线配置,不同机器人用于不同应用场景。
|
||||
- 🧩 插件扩展、活跃社区:支持事件驱动、组件扩展等插件机制;适配 Anthropic [MCP 协议](https://modelcontextprotocol.io/);目前已有数百个插件。
|
||||
- 😻 Web 管理面板:支持通过浏览器管理 LangBot 实例,不再需要手动编写配置文件。
|
||||
|
||||
<img alt="回复效果(带有联网插件)" src="https://docs.langbot.app/QChatGPT-0516.png" width="500px"/>
|
||||
详细规格特性请访问[文档](https://docs.langbot.app/zh/insight/features.html)。
|
||||
|
||||
- WebUI Demo: https://demo.langbot.dev/
|
||||
- 登录信息:邮箱:`demo@langbot.app` 密码:`langbot123456`
|
||||
- 注意:仅展示webui效果,公开环境,请不要在其中填入您的任何敏感信息。
|
||||
|
||||
## 🔌 组件兼容性
|
||||
或访问 demo 环境:https://demo.langbot.dev/
|
||||
- 登录信息:邮箱:`demo@langbot.app` 密码:`langbot123456`
|
||||
- 注意:仅展示 WebUI 效果,公开环境,请不要在其中填入您的任何敏感信息。
|
||||
|
||||
### 消息平台
|
||||
|
||||
@@ -97,10 +96,6 @@ docker compose up -d
|
||||
| Discord | ✅ | |
|
||||
| Telegram | ✅ | |
|
||||
| Slack | ✅ | |
|
||||
| LINE | 🚧 | |
|
||||
| WhatsApp | 🚧 | |
|
||||
|
||||
🚧: 正在开发中
|
||||
|
||||
### 大模型能力
|
||||
|
||||
@@ -147,9 +142,3 @@ docker compose up -d
|
||||
<a href="https://github.com/langbot-app/LangBot/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=langbot-app/LangBot" />
|
||||
</a>
|
||||
|
||||
## 😎 保持更新
|
||||
|
||||
点击仓库右上角 Star 和 Watch 按钮,获取最新动态。
|
||||
|
||||

|
||||
|
||||
43
README_EN.md
43
README_EN.md
@@ -5,7 +5,7 @@
|
||||
|
||||
<div align="center">
|
||||
|
||||
[简体中文](README.md) / English / [日本語](README_JP.md) / (PR for your language)
|
||||
English / [简体中文](README.md) / [繁體中文](README_TW.md) / [日本語](README_JP.md) / (PR for your language)
|
||||
|
||||
[](https://discord.gg/wdNEHETs87)
|
||||
[](https://deepwiki.com/langbot-app/LangBot)
|
||||
@@ -21,12 +21,7 @@
|
||||
|
||||
</p>
|
||||
|
||||
## ✨ Features
|
||||
|
||||
- 💬 Chat with LLM / Agent: Supports multiple LLMs, adapt to group chats and private chats; Supports multi-round conversations, tool calls, and multi-modal capabilities. Deeply integrates with [Dify](https://dify.ai). Currently supports QQ, QQ Channel, WeCom, personal WeChat, Lark, DingTalk, Discord, Telegram, etc.
|
||||
- 🛠️ High Stability, Feature-rich: Native access control, rate limiting, sensitive word filtering, etc. mechanisms; Easy to use, supports multiple deployment methods. Supports multiple pipeline configurations, different bots can be used for different scenarios.
|
||||
- 🧩 Plugin Extension, Active Community: Support event-driven, component extension, etc. plugin mechanisms; Integrate Anthropic [MCP protocol](https://modelcontextprotocol.io/); Currently has hundreds of plugins.
|
||||
- 😻 [New] Web UI: Support management LangBot instance through the browser. No need to manually write configuration files.
|
||||
LangBot is an open-source LLM native instant messaging robot development platform, aiming to provide out-of-the-box IM robot development experience, with Agent, RAG, MCP and other LLM application functions, adapting to global instant messaging platforms, and providing rich API interfaces, supporting custom development.
|
||||
|
||||
## 📦 Getting Started
|
||||
|
||||
@@ -60,23 +55,25 @@ Community contributed Zeabur template.
|
||||
|
||||
Directly use the released version to run, see the [Manual Deployment](https://docs.langbot.app/en/deploy/langbot/manual.html) documentation.
|
||||
|
||||
## 📸 Demo
|
||||
## 😎 Stay Ahead
|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/bot-page.png" width="400px"/>
|
||||
Click the Star and Watch button in the upper right corner of the repository to get the latest updates.
|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/create-model.png" width="400px"/>
|
||||

|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/edit-pipeline.png" width="400px"/>
|
||||
## ✨ Features
|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/plugin-market.png" width="400px"/>
|
||||
- 💬 Chat with LLM / Agent: Supports multiple LLMs, adapt to group chats and private chats; Supports multi-round conversations, tool calls, and multi-modal capabilities. Built-in RAG (knowledge base) implementation, and deeply integrates with [Dify](https://dify.ai).
|
||||
- 🤖 Multi-platform Support: Currently supports QQ, QQ Channel, WeCom, personal WeChat, Lark, DingTalk, Discord, Telegram, etc.
|
||||
- 🛠️ High Stability, Feature-rich: Native access control, rate limiting, sensitive word filtering, etc. mechanisms; Easy to use, supports multiple deployment methods. Supports multiple pipeline configurations, different bots can be used for different scenarios.
|
||||
- 🧩 Plugin Extension, Active Community: Support event-driven, component extension, etc. plugin mechanisms; Integrate Anthropic [MCP protocol](https://modelcontextprotocol.io/); Currently has hundreds of plugins.
|
||||
- 😻 Web UI: Support management LangBot instance through the browser. No need to manually write configuration files.
|
||||
|
||||
<img alt="Reply Effect (with Internet Plugin)" src="https://docs.langbot.app/QChatGPT-0516.png" width="500px"/>
|
||||
For more detailed specifications, please refer to the [documentation](https://docs.langbot.app/en/insight/features.html).
|
||||
|
||||
- WebUI Demo: https://demo.langbot.dev/
|
||||
- Login information: Email: `demo@langbot.app` Password: `langbot123456`
|
||||
- Note: Only the WebUI effect is shown, please do not fill in any sensitive information in the public environment.
|
||||
|
||||
## 🔌 Component Compatibility
|
||||
Or visit the demo environment: https://demo.langbot.dev/
|
||||
- Login information: Email: `demo@langbot.app` Password: `langbot123456`
|
||||
- Note: For WebUI demo only, please do not fill in any sensitive information in the public environment.
|
||||
|
||||
### Message Platform
|
||||
|
||||
@@ -92,10 +89,6 @@ Directly use the released version to run, see the [Manual Deployment](https://do
|
||||
| Discord | ✅ | |
|
||||
| Telegram | ✅ | |
|
||||
| Slack | ✅ | |
|
||||
| LINE | 🚧 | |
|
||||
| WhatsApp | 🚧 | |
|
||||
|
||||
🚧: In development
|
||||
|
||||
### LLMs
|
||||
|
||||
@@ -128,9 +121,3 @@ Thank you for the following [code contributors](https://github.com/langbot-app/L
|
||||
<a href="https://github.com/langbot-app/LangBot/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=langbot-app/LangBot" />
|
||||
</a>
|
||||
|
||||
## 😎 Stay Ahead
|
||||
|
||||
Click the Star and Watch button in the upper right corner of the repository to get the latest updates.
|
||||
|
||||

|
||||
45
README_JP.md
45
README_JP.md
@@ -5,7 +5,7 @@
|
||||
|
||||
<div align="center">
|
||||
|
||||
[简体中文](README.md) / [English](README_EN.md) / 日本語 / (PR for your language)
|
||||
[English](README_EN.md) / [简体中文](README.md) / [繁體中文](README_TW.md) / 日本語 / (PR for your language)
|
||||
|
||||
[](https://discord.gg/wdNEHETs87)
|
||||
[](https://deepwiki.com/langbot-app/LangBot)
|
||||
@@ -21,12 +21,7 @@
|
||||
|
||||
</p>
|
||||
|
||||
## ✨ 機能
|
||||
|
||||
- 💬 LLM / エージェントとのチャット: 複数のLLMをサポートし、グループチャットとプライベートチャットに対応。マルチラウンドの会話、ツールの呼び出し、マルチモーダル機能をサポート。 [Dify](https://dify.ai) と深く統合。現在、QQ、QQ チャンネル、WeChat、個人 WeChat、Lark、DingTalk、Discord、Telegram など、複数のプラットフォームをサポートしています。
|
||||
- 🛠️ 高い安定性、豊富な機能: ネイティブのアクセス制御、レート制限、敏感な単語のフィルタリングなどのメカニズムをサポート。使いやすく、複数のデプロイ方法をサポート。複数のパイプライン設定をサポートし、異なるボットを異なる用途に使用できます。
|
||||
- 🧩 プラグイン拡張、活発なコミュニティ: イベント駆動、コンポーネント拡張などのプラグインメカニズムをサポート。適配 Anthropic [MCP プロトコル](https://modelcontextprotocol.io/);豊富なエコシステム、現在数百のプラグインが存在。
|
||||
- 😻 Web UI: ブラウザを通じてLangBotインスタンスを管理することをサポート。
|
||||
LangBot は、エージェント、RAG、MCP などの LLM アプリケーション機能を備えた、オープンソースの LLM ネイティブのインスタントメッセージングロボット開発プラットフォームです。世界中のインスタントメッセージングプラットフォームに適応し、豊富な API インターフェースを提供し、カスタム開発をサポートします。
|
||||
|
||||
## 📦 始め方
|
||||
|
||||
@@ -42,7 +37,7 @@ http://localhost:5300 にアクセスして使用を開始します。
|
||||
|
||||
詳細なドキュメントは[Dockerデプロイ](https://docs.langbot.app/en/deploy/langbot/docker.html)を参照してください。
|
||||
|
||||
#### BTPanelでのワンクリックデプロイ
|
||||
#### Panelでのワンクリックデプロイ
|
||||
|
||||
LangBotはBTPanelにリストされています。BTPanelをインストールしている場合は、[ドキュメント](https://docs.langbot.app/en/deploy/langbot/one-click/bt.html)を使用して使用できます。
|
||||
|
||||
@@ -60,23 +55,25 @@ LangBotはBTPanelにリストされています。BTPanelをインストール
|
||||
|
||||
リリースバージョンを直接使用して実行します。[手動デプロイ](https://docs.langbot.app/en/deploy/langbot/manual.html)のドキュメントを参照してください。
|
||||
|
||||
## 📸 デモ
|
||||
## 😎 最新情報を入手
|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/bot-page.png" width="400px"/>
|
||||
リポジトリの右上にある Star と Watch ボタンをクリックして、最新の更新を取得してください。
|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/create-model.png" width="400px"/>
|
||||

|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/edit-pipeline.png" width="400px"/>
|
||||
## ✨ 機能
|
||||
|
||||
<img alt="bots" src="https://docs.langbot.app/webui/plugin-market.png" width="400px"/>
|
||||
- 💬 LLM / エージェントとのチャット: 複数のLLMをサポートし、グループチャットとプライベートチャットに対応。マルチラウンドの会話、ツールの呼び出し、マルチモーダル機能をサポート、RAG(知識ベース)を組み込み、[Dify](https://dify.ai) と深く統合。
|
||||
- 🤖 多プラットフォーム対応: 現在、QQ、QQ チャンネル、WeChat、個人 WeChat、Lark、DingTalk、Discord、Telegram など、複数のプラットフォームをサポートしています。
|
||||
- 🛠️ 高い安定性、豊富な機能: ネイティブのアクセス制御、レート制限、敏感な単語のフィルタリングなどのメカニズムをサポート。使いやすく、複数のデプロイ方法をサポート。複数のパイプライン設定をサポートし、異なるボットを異なる用途に使用できます。
|
||||
- 🧩 プラグイン拡張、活発なコミュニティ: イベント駆動、コンポーネント拡張などのプラグインメカニズムをサポート。適配 Anthropic [MCP プロトコル](https://modelcontextprotocol.io/);豊富なエコシステム、現在数百のプラグインが存在。
|
||||
- 😻 Web UI: ブラウザを通じてLangBotインスタンスを管理することをサポート。
|
||||
|
||||
<img alt="返信効果(インターネットプラグイン付き)" src="https://docs.langbot.app/QChatGPT-0516.png" width="500px"/>
|
||||
詳細な仕様については、[ドキュメント](https://docs.langbot.app/en/insight/features.html)を参照してください。
|
||||
|
||||
- WebUIデモ: https://demo.langbot.dev/
|
||||
- ログイン情報: メール: `demo@langbot.app` パスワード: `langbot123456`
|
||||
- 注意: WebUIの効果のみを示しています。公開環境では、機密情報を入力しないでください。
|
||||
|
||||
## 🔌 コンポーネントの互換性
|
||||
または、デモ環境にアクセスしてください: https://demo.langbot.dev/
|
||||
- ログイン情報: メール: `demo@langbot.app` パスワード: `langbot123456`
|
||||
- 注意: WebUI のデモンストレーションのみの場合、公開環境では機密情報を入力しないでください。
|
||||
|
||||
### メッセージプラットフォーム
|
||||
|
||||
@@ -92,10 +89,6 @@ LangBotはBTPanelにリストされています。BTPanelをインストール
|
||||
| Discord | ✅ | |
|
||||
| Telegram | ✅ | |
|
||||
| Slack | ✅ | |
|
||||
| LINE | 🚧 | |
|
||||
| WhatsApp | 🚧 | |
|
||||
|
||||
🚧: 開発中
|
||||
|
||||
### LLMs
|
||||
|
||||
@@ -128,9 +121,3 @@ LangBot への貢献に対して、以下の [コード貢献者](https://github
|
||||
<a href="https://github.com/langbot-app/LangBot/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=langbot-app/LangBot" />
|
||||
</a>
|
||||
|
||||
## 😎 最新情報を入手
|
||||
|
||||
リポジトリの右上にある Star と Watch ボタンをクリックして、最新の更新を取得してください。
|
||||
|
||||

|
||||
139
README_TW.md
Normal file
139
README_TW.md
Normal file
@@ -0,0 +1,139 @@
|
||||
<p align="center">
|
||||
<a href="https://langbot.app">
|
||||
<img src="https://docs.langbot.app/social_zh.png" alt="LangBot"/>
|
||||
</a>
|
||||
|
||||
<div align="center"><a href="https://hellogithub.com/repository/langbot-app/LangBot" target="_blank"><img src="https://abroad.hellogithub.com/v1/widgets/recommend.svg?rid=5ce8ae2aa4f74316bf393b57b952433c&claim_uid=gtmc6YWjMZkT21R" alt="Featured|HelloGitHub" style="width: 250px; height: 54px;" width="250" height="54" /></a>
|
||||
|
||||
[English](README_EN.md) / [简体中文](README.md) / 繁體中文 / [日本語](README_JP.md) / (PR for your language)
|
||||
|
||||
[](https://discord.gg/wdNEHETs87)
|
||||
[](https://qm.qq.com/q/JLi38whHum)
|
||||
[](https://deepwiki.com/langbot-app/LangBot)
|
||||
[](https://github.com/langbot-app/LangBot/releases/latest)
|
||||
<img src="https://img.shields.io/badge/python-3.10 ~ 3.13 -blue.svg" alt="python">
|
||||
[](https://gitcode.com/RockChinQ/LangBot)
|
||||
|
||||
<a href="https://langbot.app">主頁</a> |
|
||||
<a href="https://docs.langbot.app/zh/insight/guide.html">部署文件</a> |
|
||||
<a href="https://docs.langbot.app/zh/plugin/plugin-intro.html">外掛介紹</a> |
|
||||
<a href="https://github.com/langbot-app/LangBot/issues/new?assignees=&labels=%E7%8B%AC%E7%AB%8B%E6%8F%92%E4%BB%B6&projects=&template=submit-plugin.yml&title=%5BPlugin%5D%3A+%E8%AF%B7%E6%B1%82%E7%99%BB%E8%AE%B0%E6%96%B0%E6%8F%92%E4%BB%B6">提交外掛</a>
|
||||
|
||||
</div>
|
||||
|
||||
</p>
|
||||
|
||||
LangBot 是一個開源的大語言模型原生即時通訊機器人開發平台,旨在提供開箱即用的 IM 機器人開發體驗,具有 Agent、RAG、MCP 等多種 LLM 應用功能,適配全球主流即時通訊平台,並提供豐富的 API 介面,支援自定義開發。
|
||||
|
||||
## 📦 開始使用
|
||||
|
||||
#### Docker Compose 部署
|
||||
|
||||
```bash
|
||||
git clone https://github.com/langbot-app/LangBot
|
||||
cd LangBot
|
||||
docker compose up -d
|
||||
```
|
||||
|
||||
訪問 http://localhost:5300 即可開始使用。
|
||||
|
||||
詳細文件[Docker 部署](https://docs.langbot.app/zh/deploy/langbot/docker.html)。
|
||||
|
||||
#### 寶塔面板部署
|
||||
|
||||
已上架寶塔面板,若您已安裝寶塔面板,可以根據[文件](https://docs.langbot.app/zh/deploy/langbot/one-click/bt.html)使用。
|
||||
|
||||
#### Zeabur 雲端部署
|
||||
|
||||
社群貢獻的 Zeabur 模板。
|
||||
|
||||
[](https://zeabur.com/zh-CN/templates/ZKTBDH)
|
||||
|
||||
#### Railway 雲端部署
|
||||
|
||||
[](https://railway.app/template/yRrAyL?referralCode=vogKPF)
|
||||
|
||||
#### 手動部署
|
||||
|
||||
直接使用發行版運行,查看文件[手動部署](https://docs.langbot.app/zh/deploy/langbot/manual.html)。
|
||||
|
||||
## 😎 保持更新
|
||||
|
||||
點擊倉庫右上角 Star 和 Watch 按鈕,獲取最新動態。
|
||||
|
||||

|
||||
|
||||
## ✨ 特性
|
||||
|
||||
- 💬 大模型對話、Agent:支援多種大模型,適配群聊和私聊;具有多輪對話、工具調用、多模態能力,自帶 RAG(知識庫)實現,並深度適配 [Dify](https://dify.ai)。
|
||||
- 🤖 多平台支援:目前支援 QQ、QQ頻道、企業微信、個人微信、飛書、Discord、Telegram 等平台。
|
||||
- 🛠️ 高穩定性、功能完備:原生支援訪問控制、限速、敏感詞過濾等機制;配置簡單,支援多種部署方式。支援多流水線配置,不同機器人用於不同應用場景。
|
||||
- 🧩 外掛擴展、活躍社群:支援事件驅動、組件擴展等外掛機制;適配 Anthropic [MCP 協議](https://modelcontextprotocol.io/);目前已有數百個外掛。
|
||||
- 😻 Web 管理面板:支援通過瀏覽器管理 LangBot 實例,不再需要手動編寫配置文件。
|
||||
|
||||
詳細規格特性請訪問[文件](https://docs.langbot.app/zh/insight/features.html)。
|
||||
|
||||
或訪問 demo 環境:https://demo.langbot.dev/
|
||||
- 登入資訊:郵箱:`demo@langbot.app` 密碼:`langbot123456`
|
||||
- 注意:僅展示 WebUI 效果,公開環境,請不要在其中填入您的任何敏感資訊。
|
||||
|
||||
### 訊息平台
|
||||
|
||||
| 平台 | 狀態 | 備註 |
|
||||
| --- | --- | --- |
|
||||
| QQ 個人號 | ✅ | QQ 個人號私聊、群聊 |
|
||||
| QQ 官方機器人 | ✅ | QQ 官方機器人,支援頻道、私聊、群聊 |
|
||||
| 微信 | ✅ | |
|
||||
| 企微對外客服 | ✅ | |
|
||||
| 微信公眾號 | ✅ | |
|
||||
| Lark | ✅ | |
|
||||
| DingTalk | ✅ | |
|
||||
| Discord | ✅ | |
|
||||
| Telegram | ✅ | |
|
||||
| Slack | ✅ | |
|
||||
|
||||
### 大模型能力
|
||||
|
||||
| 模型 | 狀態 | 備註 |
|
||||
| --- | --- | --- |
|
||||
| [OpenAI](https://platform.openai.com/) | ✅ | 可接入任何 OpenAI 介面格式模型 |
|
||||
| [DeepSeek](https://www.deepseek.com/) | ✅ | |
|
||||
| [Moonshot](https://www.moonshot.cn/) | ✅ | |
|
||||
| [Anthropic](https://www.anthropic.com/) | ✅ | |
|
||||
| [xAI](https://x.ai/) | ✅ | |
|
||||
| [智譜AI](https://open.bigmodel.cn/) | ✅ | |
|
||||
| [優雲智算](https://www.compshare.cn/?ytag=GPU_YY-gh_langbot) | ✅ | 大模型和 GPU 資源平台 |
|
||||
| [PPIO](https://ppinfra.com/user/register?invited_by=QJKFYD&utm_source=github_langbot) | ✅ | 大模型和 GPU 資源平台 |
|
||||
| [302.AI](https://share.302.ai/SuTG99) | ✅ | 大模型聚合平台 |
|
||||
| [Google Gemini](https://aistudio.google.com/prompts/new_chat) | ✅ | |
|
||||
| [Dify](https://dify.ai) | ✅ | LLMOps 平台 |
|
||||
| [Ollama](https://ollama.com/) | ✅ | 本地大模型運行平台 |
|
||||
| [LMStudio](https://lmstudio.ai/) | ✅ | 本地大模型運行平台 |
|
||||
| [GiteeAI](https://ai.gitee.com/) | ✅ | 大模型介面聚合平台 |
|
||||
| [SiliconFlow](https://siliconflow.cn/) | ✅ | 大模型聚合平台 |
|
||||
| [阿里雲百煉](https://bailian.console.aliyun.com/) | ✅ | 大模型聚合平台, LLMOps 平台 |
|
||||
| [火山方舟](https://console.volcengine.com/ark/region:ark+cn-beijing/model?vendor=Bytedance&view=LIST_VIEW) | ✅ | 大模型聚合平台, LLMOps 平台 |
|
||||
| [ModelScope](https://modelscope.cn/docs/model-service/API-Inference/intro) | ✅ | 大模型聚合平台 |
|
||||
| [MCP](https://modelcontextprotocol.io/) | ✅ | 支援通過 MCP 協議獲取工具 |
|
||||
|
||||
### TTS
|
||||
|
||||
| 平台/模型 | 備註 |
|
||||
| --- | --- |
|
||||
| [FishAudio](https://fish.audio/zh-CN/discovery/) | [外掛](https://github.com/the-lazy-me/NewChatVoice) |
|
||||
| [海豚 AI](https://www.ttson.cn/?source=thelazy) | [外掛](https://github.com/the-lazy-me/NewChatVoice) |
|
||||
| [AzureTTS](https://portal.azure.com/) | [外掛](https://github.com/Ingnaryk/LangBot_AzureTTS) |
|
||||
|
||||
### 文生圖
|
||||
|
||||
| 平台/模型 | 備註 |
|
||||
| --- | --- |
|
||||
| 阿里雲百煉 | [外掛](https://github.com/Thetail001/LangBot_BailianTextToImagePlugin)
|
||||
|
||||
## 😘 社群貢獻
|
||||
|
||||
感謝以下[程式碼貢獻者](https://github.com/langbot-app/LangBot/graphs/contributors)和社群裡其他成員對 LangBot 的貢獻:
|
||||
|
||||
<a href="https://github.com/langbot-app/LangBot/graphs/contributors">
|
||||
<img src="https://contrib.rocks/image?repo=langbot-app/LangBot" />
|
||||
</a>
|
||||
@@ -253,6 +253,43 @@ class DingTalkClient:
|
||||
await self.logger.error(f'failed to send proactive massage to group: {traceback.format_exc()}')
|
||||
raise Exception(f'failed to send proactive massage to group: {traceback.format_exc()}')
|
||||
|
||||
async def create_and_card(
|
||||
self, temp_card_id: str, incoming_message: dingtalk_stream.ChatbotMessage, quote_origin: bool = False
|
||||
):
|
||||
content_key = 'content'
|
||||
card_data = {content_key: ''}
|
||||
|
||||
card_instance = dingtalk_stream.AICardReplier(self.client, incoming_message)
|
||||
# print(card_instance)
|
||||
# 先投放卡片: https://open.dingtalk.com/document/orgapp/create-and-deliver-cards
|
||||
card_instance_id = await card_instance.async_create_and_deliver_card(
|
||||
temp_card_id,
|
||||
card_data,
|
||||
)
|
||||
return card_instance, card_instance_id
|
||||
|
||||
async def send_card_message(self, card_instance, card_instance_id: str, content: str, is_final: bool):
|
||||
content_key = 'content'
|
||||
try:
|
||||
await card_instance.async_streaming(
|
||||
card_instance_id,
|
||||
content_key=content_key,
|
||||
content_value=content,
|
||||
append=False,
|
||||
finished=is_final,
|
||||
failed=False,
|
||||
)
|
||||
except Exception as e:
|
||||
self.logger.exception(e)
|
||||
await card_instance.async_streaming(
|
||||
card_instance_id,
|
||||
content_key=content_key,
|
||||
content_value='',
|
||||
append=False,
|
||||
finished=is_final,
|
||||
failed=True,
|
||||
)
|
||||
|
||||
async def start(self):
|
||||
"""启动 WebSocket 连接,监听消息"""
|
||||
await self.client.start()
|
||||
|
||||
@@ -104,7 +104,7 @@ class QQOfficialClient:
|
||||
return {'code': 0, 'message': 'success'}
|
||||
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in handle_callback_request: {traceback.format_exc()}")
|
||||
await self.logger.error(f'Error in handle_callback_request: {traceback.format_exc()}')
|
||||
return {'error': str(e)}, 400
|
||||
|
||||
async def run_task(self, host: str, port: int, *args, **kwargs):
|
||||
@@ -168,7 +168,6 @@ class QQOfficialClient:
|
||||
if not await self.check_access_token():
|
||||
await self.get_access_token()
|
||||
|
||||
|
||||
url = self.base_url + '/v2/users/' + user_openid + '/messages'
|
||||
async with httpx.AsyncClient() as client:
|
||||
headers = {
|
||||
@@ -193,7 +192,6 @@ class QQOfficialClient:
|
||||
if not await self.check_access_token():
|
||||
await self.get_access_token()
|
||||
|
||||
|
||||
url = self.base_url + '/v2/groups/' + group_openid + '/messages'
|
||||
async with httpx.AsyncClient() as client:
|
||||
headers = {
|
||||
@@ -209,7 +207,7 @@ class QQOfficialClient:
|
||||
if response.status_code == 200:
|
||||
return
|
||||
else:
|
||||
await self.logger.error(f"发送群聊消息失败:{response.json()}")
|
||||
await self.logger.error(f'发送群聊消息失败:{response.json()}')
|
||||
raise Exception(response.read().decode())
|
||||
|
||||
async def send_channle_group_text_msg(self, channel_id: str, content: str, msg_id: str):
|
||||
@@ -217,7 +215,6 @@ class QQOfficialClient:
|
||||
if not await self.check_access_token():
|
||||
await self.get_access_token()
|
||||
|
||||
|
||||
url = self.base_url + '/channels/' + channel_id + '/messages'
|
||||
async with httpx.AsyncClient() as client:
|
||||
headers = {
|
||||
@@ -240,7 +237,6 @@ class QQOfficialClient:
|
||||
"""发送频道私聊消息"""
|
||||
if not await self.check_access_token():
|
||||
await self.get_access_token()
|
||||
|
||||
|
||||
url = self.base_url + '/dms/' + guild_id + '/messages'
|
||||
async with httpx.AsyncClient() as client:
|
||||
|
||||
@@ -34,7 +34,6 @@ class SlackClient:
|
||||
|
||||
if self.bot_user_id and bot_user_id == self.bot_user_id:
|
||||
return jsonify({'status': 'ok'})
|
||||
|
||||
|
||||
# 处理私信
|
||||
if data and data.get('event', {}).get('channel_type') in ['im']:
|
||||
@@ -52,7 +51,7 @@ class SlackClient:
|
||||
return jsonify({'status': 'ok'})
|
||||
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in handle_callback_request: {traceback.format_exc()}")
|
||||
await self.logger.error(f'Error in handle_callback_request: {traceback.format_exc()}')
|
||||
raise (e)
|
||||
|
||||
async def _handle_message(self, event: SlackEvent):
|
||||
@@ -82,7 +81,7 @@ class SlackClient:
|
||||
self.bot_user_id = response['message']['bot_id']
|
||||
return
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in send_message: {e}")
|
||||
await self.logger.error(f'Error in send_message: {e}')
|
||||
raise e
|
||||
|
||||
async def send_message_to_one(self, text: str, user_id: str):
|
||||
@@ -93,7 +92,7 @@ class SlackClient:
|
||||
|
||||
return
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in send_message: {traceback.format_exc()}")
|
||||
await self.logger.error(f'Error in send_message: {traceback.format_exc()}')
|
||||
raise e
|
||||
|
||||
async def run_task(self, host: str, port: int, *args, **kwargs):
|
||||
|
||||
@@ -1 +1 @@
|
||||
from .client import WeChatPadClient
|
||||
from .client import WeChatPadClient as WeChatPadClient
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
from libs.wechatpad_api.util.http_util import async_request, post_json
|
||||
from libs.wechatpad_api.util.http_util import post_json
|
||||
|
||||
|
||||
class ChatRoomApi:
|
||||
@@ -7,8 +7,6 @@ class ChatRoomApi:
|
||||
self.token = token
|
||||
|
||||
def get_chatroom_member_detail(self, chatroom_name):
|
||||
params = {
|
||||
"ChatRoomName": chatroom_name
|
||||
}
|
||||
params = {'ChatRoomName': chatroom_name}
|
||||
url = self.base_url + '/group/GetChatroomMemberDetail'
|
||||
return post_json(url, token=self.token, data=params)
|
||||
|
||||
@@ -1,32 +1,23 @@
|
||||
from libs.wechatpad_api.util.http_util import async_request, post_json
|
||||
from libs.wechatpad_api.util.http_util import post_json
|
||||
import httpx
|
||||
import base64
|
||||
|
||||
|
||||
class DownloadApi:
|
||||
def __init__(self, base_url, token):
|
||||
self.base_url = base_url
|
||||
self.token = token
|
||||
|
||||
def send_download(self, aeskey, file_type, file_url):
|
||||
json_data = {
|
||||
"AesKey": aeskey,
|
||||
"FileType": file_type,
|
||||
"FileURL": file_url
|
||||
}
|
||||
url = self.base_url + "/message/SendCdnDownload"
|
||||
json_data = {'AesKey': aeskey, 'FileType': file_type, 'FileURL': file_url}
|
||||
url = self.base_url + '/message/SendCdnDownload'
|
||||
return post_json(url, token=self.token, data=json_data)
|
||||
|
||||
def get_msg_voice(self,buf_id, length, new_msgid):
|
||||
json_data = {
|
||||
"Bufid": buf_id,
|
||||
"Length": length,
|
||||
"NewMsgId": new_msgid,
|
||||
"ToUserName": ""
|
||||
}
|
||||
url = self.base_url + "/message/GetMsgVoice"
|
||||
def get_msg_voice(self, buf_id, length, new_msgid):
|
||||
json_data = {'Bufid': buf_id, 'Length': length, 'NewMsgId': new_msgid, 'ToUserName': ''}
|
||||
url = self.base_url + '/message/GetMsgVoice'
|
||||
return post_json(url, token=self.token, data=json_data)
|
||||
|
||||
|
||||
async def download_url_to_base64(self, download_url):
|
||||
async with httpx.AsyncClient() as client:
|
||||
response = await client.get(download_url)
|
||||
@@ -36,4 +27,4 @@ class DownloadApi:
|
||||
base64_str = base64.b64encode(file_bytes).decode('utf-8') # 返回字符串格式
|
||||
return base64_str
|
||||
else:
|
||||
raise Exception('获取文件失败')
|
||||
raise Exception('获取文件失败')
|
||||
|
||||
@@ -1,11 +1,6 @@
|
||||
from libs.wechatpad_api.util.http_util import post_json,async_request
|
||||
from typing import List, Dict, Any, Optional
|
||||
|
||||
|
||||
class FriendApi:
|
||||
"""联系人API类,处理所有与联系人相关的操作"""
|
||||
|
||||
def __init__(self, base_url: str, token: str):
|
||||
self.base_url = base_url
|
||||
self.token = token
|
||||
|
||||
|
||||
@@ -1,37 +1,34 @@
|
||||
from libs.wechatpad_api.util.http_util import async_request,post_json,get_json
|
||||
from libs.wechatpad_api.util.http_util import post_json, get_json
|
||||
|
||||
|
||||
class LoginApi:
|
||||
def __init__(self, base_url: str, token: str = None, admin_key: str = None):
|
||||
'''
|
||||
"""
|
||||
|
||||
Args:
|
||||
base_url: 原始路径
|
||||
token: token
|
||||
admin_key: 管理员key
|
||||
'''
|
||||
"""
|
||||
self.base_url = base_url
|
||||
self.token = token
|
||||
# self.admin_key = admin_key
|
||||
|
||||
def get_token(self, admin_key, day: int=365):
|
||||
def get_token(self, admin_key, day: int = 365):
|
||||
# 获取普通token
|
||||
url = f"{self.base_url}/admin/GenAuthKey1"
|
||||
json_data = {
|
||||
"Count": 1,
|
||||
"Days": day
|
||||
}
|
||||
url = f'{self.base_url}/admin/GenAuthKey1'
|
||||
json_data = {'Count': 1, 'Days': day}
|
||||
return post_json(base_url=url, token=admin_key, data=json_data)
|
||||
|
||||
def get_login_qr(self, Proxy: str = ""):
|
||||
'''
|
||||
def get_login_qr(self, Proxy: str = ''):
|
||||
"""
|
||||
|
||||
Args:
|
||||
Proxy:异地使用时代理
|
||||
|
||||
Returns:json数据
|
||||
|
||||
'''
|
||||
"""
|
||||
"""
|
||||
|
||||
{
|
||||
@@ -49,54 +46,37 @@ class LoginApi:
|
||||
}
|
||||
|
||||
"""
|
||||
#获取登录二维码
|
||||
url = f"{self.base_url}/login/GetLoginQrCodeNew"
|
||||
# 获取登录二维码
|
||||
url = f'{self.base_url}/login/GetLoginQrCodeNew'
|
||||
check = False
|
||||
if Proxy != "":
|
||||
if Proxy != '':
|
||||
check = True
|
||||
json_data = {
|
||||
"Check": check,
|
||||
"Proxy": Proxy
|
||||
}
|
||||
json_data = {'Check': check, 'Proxy': Proxy}
|
||||
return post_json(base_url=url, token=self.token, data=json_data)
|
||||
|
||||
|
||||
def get_login_status(self):
|
||||
# 获取登录状态
|
||||
url = f'{self.base_url}/login/GetLoginStatus'
|
||||
return get_json(base_url=url, token=self.token)
|
||||
|
||||
|
||||
|
||||
def logout(self):
|
||||
# 退出登录
|
||||
url = f'{self.base_url}/login/LogOut'
|
||||
return post_json(base_url=url, token=self.token)
|
||||
|
||||
|
||||
|
||||
|
||||
def wake_up_login(self, Proxy: str = ""):
|
||||
def wake_up_login(self, Proxy: str = ''):
|
||||
# 唤醒登录
|
||||
url = f'{self.base_url}/login/WakeUpLogin'
|
||||
check = False
|
||||
if Proxy != "":
|
||||
if Proxy != '':
|
||||
check = True
|
||||
json_data = {
|
||||
"Check": check,
|
||||
"Proxy": ""
|
||||
}
|
||||
json_data = {'Check': check, 'Proxy': ''}
|
||||
|
||||
return post_json(base_url=url, token=self.token, data=json_data)
|
||||
|
||||
|
||||
|
||||
def login(self,admin_key):
|
||||
def login(self, admin_key):
|
||||
login_status = self.get_login_status()
|
||||
if login_status["Code"] == 300 and login_status["Text"] == "你已退出微信":
|
||||
print("token已经失效,重新获取")
|
||||
if login_status['Code'] == 300 and login_status['Text'] == '你已退出微信':
|
||||
print('token已经失效,重新获取')
|
||||
token_data = self.get_token(admin_key)
|
||||
self.token = token_data["Data"][0]
|
||||
|
||||
|
||||
|
||||
self.token = token_data['Data'][0]
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
|
||||
from libs.wechatpad_api.util.http_util import async_request, post_json
|
||||
from libs.wechatpad_api.util.http_util import post_json
|
||||
|
||||
|
||||
class MessageApi:
|
||||
@@ -7,8 +6,8 @@ class MessageApi:
|
||||
self.base_url = base_url
|
||||
self.token = token
|
||||
|
||||
def post_text(self, to_wxid, content, ats: list= []):
|
||||
'''
|
||||
def post_text(self, to_wxid, content, ats: list = []):
|
||||
"""
|
||||
|
||||
Args:
|
||||
app_id: 微信id
|
||||
@@ -18,106 +17,64 @@ class MessageApi:
|
||||
|
||||
Returns:
|
||||
|
||||
'''
|
||||
url = self.base_url + "/message/SendTextMessage"
|
||||
"""
|
||||
url = self.base_url + '/message/SendTextMessage'
|
||||
"""发送文字消息"""
|
||||
json_data = {
|
||||
"MsgItem": [
|
||||
{
|
||||
"AtWxIDList": ats,
|
||||
"ImageContent": "",
|
||||
"MsgType": 0,
|
||||
"TextContent": content,
|
||||
"ToUserName": to_wxid
|
||||
}
|
||||
]
|
||||
}
|
||||
return post_json(base_url=url, token=self.token, data=json_data)
|
||||
'MsgItem': [
|
||||
{'AtWxIDList': ats, 'ImageContent': '', 'MsgType': 0, 'TextContent': content, 'ToUserName': to_wxid}
|
||||
]
|
||||
}
|
||||
return post_json(base_url=url, token=self.token, data=json_data)
|
||||
|
||||
|
||||
|
||||
|
||||
def post_image(self, to_wxid, img_url, ats: list= []):
|
||||
def post_image(self, to_wxid, img_url, ats: list = []):
|
||||
"""发送图片消息"""
|
||||
# 这里好像可以尝试发送多个暂时未测试
|
||||
json_data = {
|
||||
"MsgItem": [
|
||||
{
|
||||
"AtWxIDList": ats,
|
||||
"ImageContent": img_url,
|
||||
"MsgType": 0,
|
||||
"TextContent": '',
|
||||
"ToUserName": to_wxid
|
||||
}
|
||||
'MsgItem': [
|
||||
{'AtWxIDList': ats, 'ImageContent': img_url, 'MsgType': 0, 'TextContent': '', 'ToUserName': to_wxid}
|
||||
]
|
||||
}
|
||||
url = self.base_url + "/message/SendImageMessage"
|
||||
url = self.base_url + '/message/SendImageMessage'
|
||||
return post_json(base_url=url, token=self.token, data=json_data)
|
||||
|
||||
def post_voice(self, to_wxid, voice_data, voice_forma, voice_duration):
|
||||
"""发送语音消息"""
|
||||
json_data = {
|
||||
"ToUserName": to_wxid,
|
||||
"VoiceData": voice_data,
|
||||
"VoiceFormat": voice_forma,
|
||||
"VoiceSecond": voice_duration
|
||||
'ToUserName': to_wxid,
|
||||
'VoiceData': voice_data,
|
||||
'VoiceFormat': voice_forma,
|
||||
'VoiceSecond': voice_duration,
|
||||
}
|
||||
url = self.base_url + "/message/SendVoice"
|
||||
url = self.base_url + '/message/SendVoice'
|
||||
return post_json(base_url=url, token=self.token, data=json_data)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def post_name_card(self, alias, to_wxid, nick_name, name_card_wxid, flag):
|
||||
"""发送名片消息"""
|
||||
param = {
|
||||
"CardAlias": alias,
|
||||
"CardFlag": flag,
|
||||
"CardNickName": nick_name,
|
||||
"CardWxId": name_card_wxid,
|
||||
"ToUserName": to_wxid
|
||||
'CardAlias': alias,
|
||||
'CardFlag': flag,
|
||||
'CardNickName': nick_name,
|
||||
'CardWxId': name_card_wxid,
|
||||
'ToUserName': to_wxid,
|
||||
}
|
||||
url = f"{self.base_url}/message/ShareCardMessage"
|
||||
url = f'{self.base_url}/message/ShareCardMessage'
|
||||
return post_json(base_url=url, token=self.token, data=param)
|
||||
|
||||
def post_emoji(self, to_wxid, emoji_md5, emoji_size:int=0):
|
||||
def post_emoji(self, to_wxid, emoji_md5, emoji_size: int = 0):
|
||||
"""发送emoji消息"""
|
||||
json_data = {
|
||||
"EmojiList": [
|
||||
{
|
||||
"EmojiMd5": emoji_md5,
|
||||
"EmojiSize": emoji_size,
|
||||
"ToUserName": to_wxid
|
||||
}
|
||||
]
|
||||
}
|
||||
url = f"{self.base_url}/message/SendEmojiMessage"
|
||||
json_data = {'EmojiList': [{'EmojiMd5': emoji_md5, 'EmojiSize': emoji_size, 'ToUserName': to_wxid}]}
|
||||
url = f'{self.base_url}/message/SendEmojiMessage'
|
||||
return post_json(base_url=url, token=self.token, data=json_data)
|
||||
|
||||
def post_app_msg(self, to_wxid,xml_data, contenttype:int=0):
|
||||
def post_app_msg(self, to_wxid, xml_data, contenttype: int = 0):
|
||||
"""发送appmsg消息"""
|
||||
json_data = {
|
||||
"AppList": [
|
||||
{
|
||||
"ContentType": contenttype,
|
||||
"ContentXML": xml_data,
|
||||
"ToUserName": to_wxid
|
||||
}
|
||||
]
|
||||
}
|
||||
url = f"{self.base_url}/message/SendAppMessage"
|
||||
json_data = {'AppList': [{'ContentType': contenttype, 'ContentXML': xml_data, 'ToUserName': to_wxid}]}
|
||||
url = f'{self.base_url}/message/SendAppMessage'
|
||||
return post_json(base_url=url, token=self.token, data=json_data)
|
||||
|
||||
|
||||
|
||||
def revoke_msg(self, to_wxid, msg_id, new_msg_id, create_time):
|
||||
"""撤回消息"""
|
||||
param = {
|
||||
"ClientMsgId": msg_id,
|
||||
"CreateTime": create_time,
|
||||
"NewMsgId": new_msg_id,
|
||||
"ToUserName": to_wxid
|
||||
}
|
||||
url = f"{self.base_url}/message/RevokeMsg"
|
||||
return post_json(base_url=url, token=self.token, data=param)
|
||||
param = {'ClientMsgId': msg_id, 'CreateTime': create_time, 'NewMsgId': new_msg_id, 'ToUserName': to_wxid}
|
||||
url = f'{self.base_url}/message/RevokeMsg'
|
||||
return post_json(base_url=url, token=self.token, data=param)
|
||||
|
||||
@@ -12,12 +12,9 @@ class UserApi:
|
||||
|
||||
return get_json(base_url=url, token=self.token)
|
||||
|
||||
def get_qr_code(self, recover:bool=True, style:int=8):
|
||||
def get_qr_code(self, recover: bool = True, style: int = 8):
|
||||
"""获取自己的二维码"""
|
||||
param = {
|
||||
"Recover": recover,
|
||||
"Style": style
|
||||
}
|
||||
param = {'Recover': recover, 'Style': style}
|
||||
url = f'{self.base_url}/user/GetMyQRCode'
|
||||
return post_json(base_url=url, token=self.token, data=param)
|
||||
|
||||
@@ -26,12 +23,8 @@ class UserApi:
|
||||
url = f'{self.base_url}/equipment/GetSafetyInfo'
|
||||
return post_json(base_url=url, token=self.token)
|
||||
|
||||
|
||||
|
||||
async def update_head_img(self, head_img_base64):
|
||||
async def update_head_img(self, head_img_base64):
|
||||
"""修改头像"""
|
||||
param = {
|
||||
"Base64": head_img_base64
|
||||
}
|
||||
param = {'Base64': head_img_base64}
|
||||
url = f'{self.base_url}/user/UploadHeadImage'
|
||||
return await async_request(base_url=url, token_key=self.token, json=param)
|
||||
return await async_request(base_url=url, token_key=self.token, json=param)
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
|
||||
from libs.wechatpad_api.api.login import LoginApi
|
||||
from libs.wechatpad_api.api.friend import FriendApi
|
||||
from libs.wechatpad_api.api.message import MessageApi
|
||||
@@ -7,9 +6,6 @@ from libs.wechatpad_api.api.downloadpai import DownloadApi
|
||||
from libs.wechatpad_api.api.chatroom import ChatRoomApi
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
class WeChatPadClient:
|
||||
def __init__(self, base_url, token, logger=None):
|
||||
self._login_api = LoginApi(base_url, token)
|
||||
@@ -20,16 +16,16 @@ class WeChatPadClient:
|
||||
self._chatroom_api = ChatRoomApi(base_url, token)
|
||||
self.logger = logger
|
||||
|
||||
def get_token(self,admin_key, day: int):
|
||||
'''获取token'''
|
||||
def get_token(self, admin_key, day: int):
|
||||
"""获取token"""
|
||||
return self._login_api.get_token(admin_key, day)
|
||||
|
||||
def get_login_qr(self, Proxy:str=""):
|
||||
def get_login_qr(self, Proxy: str = ''):
|
||||
"""登录二维码"""
|
||||
return self._login_api.get_login_qr(Proxy=Proxy)
|
||||
|
||||
def awaken_login(self, Proxy:str=""):
|
||||
'''唤醒登录'''
|
||||
def awaken_login(self, Proxy: str = ''):
|
||||
"""唤醒登录"""
|
||||
return self._login_api.wake_up_login(Proxy=Proxy)
|
||||
|
||||
def log_out(self):
|
||||
@@ -40,59 +36,57 @@ class WeChatPadClient:
|
||||
"""获取登录状态"""
|
||||
return self._login_api.get_login_status()
|
||||
|
||||
def send_text_message(self, to_wxid, message, ats: list=[]):
|
||||
def send_text_message(self, to_wxid, message, ats: list = []):
|
||||
"""发送文本消息"""
|
||||
return self._message_api.post_text(to_wxid, message, ats)
|
||||
return self._message_api.post_text(to_wxid, message, ats)
|
||||
|
||||
def send_image_message(self, to_wxid, img_url, ats: list=[]):
|
||||
def send_image_message(self, to_wxid, img_url, ats: list = []):
|
||||
"""发送图片消息"""
|
||||
return self._message_api.post_image(to_wxid, img_url, ats)
|
||||
return self._message_api.post_image(to_wxid, img_url, ats)
|
||||
|
||||
def send_voice_message(self, to_wxid, voice_data, voice_forma, voice_duration):
|
||||
"""发送音频消息"""
|
||||
return self._message_api.post_voice(to_wxid, voice_data, voice_forma, voice_duration)
|
||||
return self._message_api.post_voice(to_wxid, voice_data, voice_forma, voice_duration)
|
||||
|
||||
def send_app_message(self, to_wxid, app_message, type):
|
||||
"""发送app消息"""
|
||||
return self._message_api.post_app_msg(to_wxid, app_message, type)
|
||||
return self._message_api.post_app_msg(to_wxid, app_message, type)
|
||||
|
||||
def send_emoji_message(self, to_wxid, emoji_md5, emoji_size):
|
||||
"""发送emoji消息"""
|
||||
return self._message_api.post_emoji(to_wxid,emoji_md5,emoji_size)
|
||||
return self._message_api.post_emoji(to_wxid, emoji_md5, emoji_size)
|
||||
|
||||
def revoke_msg(self, to_wxid, msg_id, new_msg_id, create_time):
|
||||
"""撤回消息"""
|
||||
return self._message_api.revoke_msg(to_wxid, msg_id, new_msg_id, create_time)
|
||||
return self._message_api.revoke_msg(to_wxid, msg_id, new_msg_id, create_time)
|
||||
|
||||
def get_profile(self):
|
||||
"""获取用户信息"""
|
||||
return self._user_api.get_profile()
|
||||
|
||||
def get_qr_code(self, recover:bool=True, style:int=8):
|
||||
def get_qr_code(self, recover: bool = True, style: int = 8):
|
||||
"""获取用户二维码"""
|
||||
return self._user_api.get_qr_code(recover=recover, style=style)
|
||||
return self._user_api.get_qr_code(recover=recover, style=style)
|
||||
|
||||
def get_safety_info(self):
|
||||
"""获取设备信息"""
|
||||
return self._user_api.get_safety_info()
|
||||
return self._user_api.get_safety_info()
|
||||
|
||||
def update_head_img(self, head_img_base64):
|
||||
def update_head_img(self, head_img_base64):
|
||||
"""上传用户头像"""
|
||||
return self._user_api.update_head_img(head_img_base64)
|
||||
return self._user_api.update_head_img(head_img_base64)
|
||||
|
||||
def cdn_download(self, aeskey, file_type, file_url):
|
||||
"""cdn下载"""
|
||||
return self._download_api.send_download( aeskey, file_type, file_url)
|
||||
return self._download_api.send_download(aeskey, file_type, file_url)
|
||||
|
||||
def get_msg_voice(self,buf_id, length, msgid):
|
||||
def get_msg_voice(self, buf_id, length, msgid):
|
||||
"""下载语音"""
|
||||
return self._download_api.get_msg_voice(buf_id, length, msgid)
|
||||
|
||||
async def download_base64(self,url):
|
||||
async def download_base64(self, url):
|
||||
return await self._download_api.download_url_to_base64(download_url=url)
|
||||
|
||||
def get_chatroom_member_detail(self, chatroom_name):
|
||||
"""查看群成员详情"""
|
||||
return self._chatroom_api.get_chatroom_member_detail(chatroom_name)
|
||||
|
||||
|
||||
|
||||
@@ -1,10 +1,9 @@
|
||||
import requests
|
||||
import aiohttp
|
||||
|
||||
|
||||
def post_json(base_url, token, data=None):
|
||||
headers = {
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
|
||||
headers = {'Content-Type': 'application/json'}
|
||||
|
||||
url = base_url + f'?key={token}'
|
||||
|
||||
@@ -18,14 +17,12 @@ def post_json(base_url, token, data=None):
|
||||
else:
|
||||
raise RuntimeError(response.text)
|
||||
except Exception as e:
|
||||
print(f"http请求失败, url={url}, exception={e}")
|
||||
print(f'http请求失败, url={url}, exception={e}')
|
||||
raise RuntimeError(str(e))
|
||||
|
||||
def get_json(base_url, token):
|
||||
headers = {
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
|
||||
def get_json(base_url, token):
|
||||
headers = {'Content-Type': 'application/json'}
|
||||
|
||||
url = base_url + f'?key={token}'
|
||||
|
||||
@@ -39,21 +36,18 @@ def get_json(base_url, token):
|
||||
else:
|
||||
raise RuntimeError(response.text)
|
||||
except Exception as e:
|
||||
print(f"http请求失败, url={url}, exception={e}")
|
||||
print(f'http请求失败, url={url}, exception={e}')
|
||||
raise RuntimeError(str(e))
|
||||
|
||||
import aiohttp
|
||||
import asyncio
|
||||
|
||||
|
||||
async def async_request(
|
||||
base_url: str,
|
||||
token_key: str,
|
||||
method: str = 'POST',
|
||||
params: dict = None,
|
||||
# headers: dict = None,
|
||||
data: dict = None,
|
||||
json: dict = None
|
||||
base_url: str,
|
||||
token_key: str,
|
||||
method: str = 'POST',
|
||||
params: dict = None,
|
||||
# headers: dict = None,
|
||||
data: dict = None,
|
||||
json: dict = None,
|
||||
):
|
||||
"""
|
||||
通用异步请求函数
|
||||
@@ -67,18 +61,11 @@ async def async_request(
|
||||
:param json: JSON数据
|
||||
:return: 响应文本
|
||||
"""
|
||||
headers = {
|
||||
'Content-Type': 'application/json'
|
||||
}
|
||||
url = f"{base_url}?key={token_key}"
|
||||
headers = {'Content-Type': 'application/json'}
|
||||
url = f'{base_url}?key={token_key}'
|
||||
async with aiohttp.ClientSession() as session:
|
||||
async with session.request(
|
||||
method=method,
|
||||
url=url,
|
||||
params=params,
|
||||
headers=headers,
|
||||
data=data,
|
||||
json=json
|
||||
method=method, url=url, params=params, headers=headers, data=data, json=json
|
||||
) as response:
|
||||
response.raise_for_status() # 如果状态码不是200,抛出异常
|
||||
result = await response.json()
|
||||
@@ -89,4 +76,3 @@ async def async_request(
|
||||
# return await result
|
||||
# else:
|
||||
# raise RuntimeError("请求失败",response.text)
|
||||
|
||||
|
||||
@@ -1,31 +1,34 @@
|
||||
import qrcode
|
||||
|
||||
|
||||
def print_green(text):
|
||||
print(f"\033[32m{text}\033[0m")
|
||||
print(f'\033[32m{text}\033[0m')
|
||||
|
||||
|
||||
def print_yellow(text):
|
||||
print(f"\033[33m{text}\033[0m")
|
||||
print(f'\033[33m{text}\033[0m')
|
||||
|
||||
|
||||
def print_red(text):
|
||||
print(f"\033[31m{text}\033[0m")
|
||||
print(f'\033[31m{text}\033[0m')
|
||||
|
||||
|
||||
def make_and_print_qr(url):
|
||||
"""生成并打印二维码
|
||||
|
||||
|
||||
Args:
|
||||
url: 需要生成二维码的URL字符串
|
||||
|
||||
|
||||
Returns:
|
||||
None
|
||||
|
||||
|
||||
功能:
|
||||
1. 在终端打印二维码的ASCII图形
|
||||
2. 同时提供在线二维码生成链接作为备选
|
||||
"""
|
||||
print_green("请扫描下方二维码登录")
|
||||
print_green('请扫描下方二维码登录')
|
||||
qr = qrcode.QRCode()
|
||||
qr.add_data(url)
|
||||
qr.make()
|
||||
qr.print_ascii(invert=True)
|
||||
print_green(f"也可以访问下方链接获取二维码:\nhttps://api.qrserver.com/v1/create-qr-code/?data={url}")
|
||||
|
||||
print_green(f'也可以访问下方链接获取二维码:\nhttps://api.qrserver.com/v1/create-qr-code/?data={url}')
|
||||
|
||||
@@ -57,7 +57,7 @@ class WecomClient:
|
||||
if 'access_token' in data:
|
||||
return data['access_token']
|
||||
else:
|
||||
await self.logger.error(f"获取accesstoken失败:{response.json()}")
|
||||
await self.logger.error(f'获取accesstoken失败:{response.json()}')
|
||||
raise Exception(f'未获取access token: {data}')
|
||||
|
||||
async def get_users(self):
|
||||
@@ -129,7 +129,7 @@ class WecomClient:
|
||||
response = await client.post(url, json=params)
|
||||
data = response.json()
|
||||
except Exception as e:
|
||||
await self.logger.error(f"发送图片失败:{data}")
|
||||
await self.logger.error(f'发送图片失败:{data}')
|
||||
raise Exception('Failed to send image: ' + str(e))
|
||||
|
||||
# 企业微信错误码40014和42001,代表accesstoken问题
|
||||
@@ -164,7 +164,7 @@ class WecomClient:
|
||||
self.access_token = await self.get_access_token(self.secret)
|
||||
return await self.send_private_msg(user_id, agent_id, content)
|
||||
if data['errcode'] != 0:
|
||||
await self.logger.error(f"发送消息失败:{data}")
|
||||
await self.logger.error(f'发送消息失败:{data}')
|
||||
raise Exception('Failed to send message: ' + str(data))
|
||||
|
||||
async def handle_callback_request(self):
|
||||
@@ -181,7 +181,7 @@ class WecomClient:
|
||||
echostr = request.args.get('echostr')
|
||||
ret, reply_echo_str = wxcpt.VerifyURL(msg_signature, timestamp, nonce, echostr)
|
||||
if ret != 0:
|
||||
await self.logger.error("验证失败")
|
||||
await self.logger.error('验证失败')
|
||||
raise Exception(f'验证失败,错误码: {ret}')
|
||||
return reply_echo_str
|
||||
|
||||
@@ -189,9 +189,8 @@ class WecomClient:
|
||||
encrypt_msg = await request.data
|
||||
ret, xml_msg = wxcpt.DecryptMsg(encrypt_msg, msg_signature, timestamp, nonce)
|
||||
if ret != 0:
|
||||
await self.logger.error("消息解密失败")
|
||||
await self.logger.error('消息解密失败')
|
||||
raise Exception(f'消息解密失败,错误码: {ret}')
|
||||
|
||||
|
||||
# 解析消息并处理
|
||||
message_data = await self.get_message(xml_msg)
|
||||
@@ -202,7 +201,7 @@ class WecomClient:
|
||||
|
||||
return 'success'
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in handle_callback_request: {traceback.format_exc()}")
|
||||
await self.logger.error(f'Error in handle_callback_request: {traceback.format_exc()}')
|
||||
return f'Error processing request: {str(e)}', 400
|
||||
|
||||
async def run_task(self, host: str, port: int, *args, **kwargs):
|
||||
@@ -301,7 +300,7 @@ class WecomClient:
|
||||
except binascii.Error as e:
|
||||
raise ValueError(f'Invalid base64 string: {str(e)}')
|
||||
else:
|
||||
await self.logger.error("Image对象出错")
|
||||
await self.logger.error('Image对象出错')
|
||||
raise ValueError('image对象出错')
|
||||
|
||||
# 设置 multipart/form-data 格式的文件
|
||||
@@ -325,7 +324,7 @@ class WecomClient:
|
||||
self.access_token = await self.get_access_token(self.secret)
|
||||
media_id = await self.upload_to_work(image)
|
||||
if data.get('errcode', 0) != 0:
|
||||
await self.logger.error(f"上传图片失败:{data}")
|
||||
await self.logger.error(f'上传图片失败:{data}')
|
||||
raise Exception('failed to upload file')
|
||||
|
||||
media_id = data.get('media_id')
|
||||
|
||||
@@ -187,7 +187,7 @@ class WecomCSClient:
|
||||
self.access_token = await self.get_access_token(self.secret)
|
||||
return await self.send_text_msg(open_kfid, external_userid, msgid, content)
|
||||
if data['errcode'] != 0:
|
||||
await self.logger.error(f"发送消息失败:{data}")
|
||||
await self.logger.error(f'发送消息失败:{data}')
|
||||
raise Exception('Failed to send message')
|
||||
return data
|
||||
|
||||
@@ -227,7 +227,7 @@ class WecomCSClient:
|
||||
return 'success'
|
||||
except Exception as e:
|
||||
if self.logger:
|
||||
await self.logger.error(f"Error in handle_callback_request: {traceback.format_exc()}")
|
||||
await self.logger.error(f'Error in handle_callback_request: {traceback.format_exc()}')
|
||||
else:
|
||||
traceback.print_exc()
|
||||
return f'Error processing request: {str(e)}', 400
|
||||
|
||||
@@ -14,8 +14,8 @@ preregistered_groups: list[type[RouterGroup]] = []
|
||||
"""Pre-registered list of RouterGroup"""
|
||||
|
||||
|
||||
def group_class(name: str, path: str) -> None:
|
||||
"""Register a RouterGroup"""
|
||||
def group_class(name: str, path: str) -> typing.Callable[[typing.Type[RouterGroup]], typing.Type[RouterGroup]]:
|
||||
"""注册一个 RouterGroup"""
|
||||
|
||||
def decorator(cls: typing.Type[RouterGroup]) -> typing.Type[RouterGroup]:
|
||||
cls.name = name
|
||||
@@ -86,10 +86,11 @@ class RouterGroup(abc.ABC):
|
||||
|
||||
try:
|
||||
return await f(*args, **kwargs)
|
||||
except Exception: # auto 500
|
||||
|
||||
except Exception as e: # 自动 500
|
||||
traceback.print_exc()
|
||||
# return self.http_status(500, -2, str(e))
|
||||
return self.http_status(500, -2, 'internal server error')
|
||||
return self.http_status(500, -2, str(e))
|
||||
|
||||
new_f = handler_error
|
||||
new_f.__name__ = (self.name + rule).replace('/', '__')
|
||||
@@ -120,6 +121,6 @@ class RouterGroup(abc.ABC):
|
||||
}
|
||||
)
|
||||
|
||||
def http_status(self, status: int, code: int, msg: str) -> quart.Response:
|
||||
"""Return a response with a specified status code"""
|
||||
return self.fail(code, msg), status
|
||||
def http_status(self, status: int, code: int, msg: str) -> typing.Tuple[quart.Response, int]:
|
||||
"""返回一个指定状态码的响应"""
|
||||
return (self.fail(code, msg), status)
|
||||
|
||||
@@ -2,6 +2,10 @@ from __future__ import annotations
|
||||
|
||||
import quart
|
||||
import mimetypes
|
||||
import uuid
|
||||
import asyncio
|
||||
|
||||
import quart.datastructures
|
||||
|
||||
from .. import group
|
||||
|
||||
@@ -20,3 +24,23 @@ class FilesRouterGroup(group.RouterGroup):
|
||||
mime_type = 'image/jpeg'
|
||||
|
||||
return quart.Response(image_bytes, mimetype=mime_type)
|
||||
|
||||
@self.route('/documents', methods=['POST'], auth_type=group.AuthType.USER_TOKEN)
|
||||
async def _() -> quart.Response:
|
||||
request = quart.request
|
||||
# get file bytes from 'file'
|
||||
file = (await request.files)['file']
|
||||
assert isinstance(file, quart.datastructures.FileStorage)
|
||||
|
||||
file_bytes = await asyncio.to_thread(file.stream.read)
|
||||
extension = file.filename.split('.')[-1]
|
||||
file_name = file.filename.split('.')[0]
|
||||
|
||||
file_key = file_name + '_' + str(uuid.uuid4())[:8] + '.' + extension
|
||||
# save file to storage
|
||||
await self.ap.storage_mgr.storage_provider.save(file_key, file_bytes)
|
||||
return self.success(
|
||||
data={
|
||||
'file_id': file_key,
|
||||
}
|
||||
)
|
||||
|
||||
90
pkg/api/http/controller/groups/knowledge/base.py
Normal file
90
pkg/api/http/controller/groups/knowledge/base.py
Normal file
@@ -0,0 +1,90 @@
|
||||
import quart
|
||||
from ... import group
|
||||
|
||||
|
||||
@group.group_class('knowledge_base', '/api/v1/knowledge/bases')
|
||||
class KnowledgeBaseRouterGroup(group.RouterGroup):
|
||||
async def initialize(self) -> None:
|
||||
@self.route('', methods=['POST', 'GET'])
|
||||
async def handle_knowledge_bases() -> quart.Response:
|
||||
if quart.request.method == 'GET':
|
||||
knowledge_bases = await self.ap.knowledge_service.get_knowledge_bases()
|
||||
return self.success(data={'bases': knowledge_bases})
|
||||
|
||||
elif quart.request.method == 'POST':
|
||||
json_data = await quart.request.json
|
||||
knowledge_base_uuid = await self.ap.knowledge_service.create_knowledge_base(json_data)
|
||||
return self.success(data={'uuid': knowledge_base_uuid})
|
||||
|
||||
return self.http_status(405, -1, 'Method not allowed')
|
||||
|
||||
@self.route(
|
||||
'/<knowledge_base_uuid>',
|
||||
methods=['GET', 'DELETE', 'PUT'],
|
||||
)
|
||||
async def handle_specific_knowledge_base(knowledge_base_uuid: str) -> quart.Response:
|
||||
if quart.request.method == 'GET':
|
||||
knowledge_base = await self.ap.knowledge_service.get_knowledge_base(knowledge_base_uuid)
|
||||
|
||||
if knowledge_base is None:
|
||||
return self.http_status(404, -1, 'knowledge base not found')
|
||||
|
||||
return self.success(
|
||||
data={
|
||||
'base': knowledge_base,
|
||||
}
|
||||
)
|
||||
|
||||
elif quart.request.method == 'PUT':
|
||||
json_data = await quart.request.json
|
||||
await self.ap.knowledge_service.update_knowledge_base(knowledge_base_uuid, json_data)
|
||||
return self.success({})
|
||||
|
||||
elif quart.request.method == 'DELETE':
|
||||
await self.ap.knowledge_service.delete_knowledge_base(knowledge_base_uuid)
|
||||
return self.success({})
|
||||
|
||||
@self.route(
|
||||
'/<knowledge_base_uuid>/files',
|
||||
methods=['GET', 'POST'],
|
||||
)
|
||||
async def get_knowledge_base_files(knowledge_base_uuid: str) -> str:
|
||||
if quart.request.method == 'GET':
|
||||
files = await self.ap.knowledge_service.get_files_by_knowledge_base(knowledge_base_uuid)
|
||||
return self.success(
|
||||
data={
|
||||
'files': files,
|
||||
}
|
||||
)
|
||||
|
||||
elif quart.request.method == 'POST':
|
||||
json_data = await quart.request.json
|
||||
file_id = json_data.get('file_id')
|
||||
if not file_id:
|
||||
return self.http_status(400, -1, 'File ID is required')
|
||||
|
||||
# 调用服务层方法将文件与知识库关联
|
||||
task_id = await self.ap.knowledge_service.store_file(knowledge_base_uuid, file_id)
|
||||
return self.success(
|
||||
{
|
||||
'task_id': task_id,
|
||||
}
|
||||
)
|
||||
|
||||
@self.route(
|
||||
'/<knowledge_base_uuid>/files/<file_id>',
|
||||
methods=['DELETE'],
|
||||
)
|
||||
async def delete_specific_file_in_kb(file_id: str, knowledge_base_uuid: str) -> str:
|
||||
await self.ap.knowledge_service.delete_file(knowledge_base_uuid, file_id)
|
||||
return self.success({})
|
||||
|
||||
@self.route(
|
||||
'/<knowledge_base_uuid>/retrieve',
|
||||
methods=['POST'],
|
||||
)
|
||||
async def retrieve_knowledge_base(knowledge_base_uuid: str) -> str:
|
||||
json_data = await quart.request.json
|
||||
query = json_data.get('query')
|
||||
results = await self.ap.knowledge_service.retrieve_knowledge_base(knowledge_base_uuid, query)
|
||||
return self.success(data={'results': results})
|
||||
@@ -11,7 +11,11 @@ class PipelinesRouterGroup(group.RouterGroup):
|
||||
@self.route('', methods=['GET', 'POST'])
|
||||
async def _() -> str:
|
||||
if quart.request.method == 'GET':
|
||||
return self.success(data={'pipelines': await self.ap.pipeline_service.get_pipelines()})
|
||||
sort_by = quart.request.args.get('sort_by', 'created_at')
|
||||
sort_order = quart.request.args.get('sort_order', 'DESC')
|
||||
return self.success(
|
||||
data={'pipelines': await self.ap.pipeline_service.get_pipelines(sort_by, sort_order)}
|
||||
)
|
||||
elif quart.request.method == 'POST':
|
||||
json_data = await quart.request.json
|
||||
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
import json
|
||||
|
||||
import quart
|
||||
|
||||
from ... import group
|
||||
@@ -9,10 +11,18 @@ class WebChatDebugRouterGroup(group.RouterGroup):
|
||||
@self.route('/send', methods=['POST'])
|
||||
async def send_message(pipeline_uuid: str) -> str:
|
||||
"""Send a message to the pipeline for debugging"""
|
||||
|
||||
async def stream_generator(generator):
|
||||
yield 'data: {"type": "start"}\n\n'
|
||||
async for message in generator:
|
||||
yield f'data: {json.dumps({"message": message})}\n\n'
|
||||
yield 'data: {"type": "end"}\n\n'
|
||||
|
||||
try:
|
||||
data = await quart.request.get_json()
|
||||
session_type = data.get('session_type', 'person')
|
||||
message_chain_obj = data.get('message', [])
|
||||
is_stream = data.get('is_stream', False)
|
||||
|
||||
if not message_chain_obj:
|
||||
return self.http_status(400, -1, 'message is required')
|
||||
@@ -25,13 +35,33 @@ class WebChatDebugRouterGroup(group.RouterGroup):
|
||||
if not webchat_adapter:
|
||||
return self.http_status(404, -1, 'WebChat adapter not found')
|
||||
|
||||
result = await webchat_adapter.send_webchat_message(pipeline_uuid, session_type, message_chain_obj)
|
||||
|
||||
return self.success(
|
||||
data={
|
||||
'message': result,
|
||||
if is_stream:
|
||||
generator = webchat_adapter.send_webchat_message(
|
||||
pipeline_uuid, session_type, message_chain_obj, is_stream
|
||||
)
|
||||
# 设置正确的响应头
|
||||
headers = {
|
||||
'Content-Type': 'text/event-stream',
|
||||
'Transfer-Encoding': 'chunked',
|
||||
'Cache-Control': 'no-cache',
|
||||
'Connection': 'keep-alive'
|
||||
}
|
||||
)
|
||||
return quart.Response(stream_generator(generator), mimetype='text/event-stream',headers=headers)
|
||||
|
||||
else: # non-stream
|
||||
result = None
|
||||
async for message in webchat_adapter.send_webchat_message(
|
||||
pipeline_uuid, session_type, message_chain_obj
|
||||
):
|
||||
result = message
|
||||
if result is not None:
|
||||
return self.success(
|
||||
data={
|
||||
'message': result,
|
||||
}
|
||||
)
|
||||
else:
|
||||
return self.http_status(400, -1, 'message is required')
|
||||
|
||||
except Exception as e:
|
||||
return self.http_status(500, -1, f'Internal server error: {str(e)}')
|
||||
|
||||
@@ -9,18 +9,18 @@ class LLMModelsRouterGroup(group.RouterGroup):
|
||||
@self.route('', methods=['GET', 'POST'])
|
||||
async def _() -> str:
|
||||
if quart.request.method == 'GET':
|
||||
return self.success(data={'models': await self.ap.model_service.get_llm_models()})
|
||||
return self.success(data={'models': await self.ap.llm_model_service.get_llm_models()})
|
||||
elif quart.request.method == 'POST':
|
||||
json_data = await quart.request.json
|
||||
|
||||
model_uuid = await self.ap.model_service.create_llm_model(json_data)
|
||||
model_uuid = await self.ap.llm_model_service.create_llm_model(json_data)
|
||||
|
||||
return self.success(data={'uuid': model_uuid})
|
||||
|
||||
@self.route('/<model_uuid>', methods=['GET', 'PUT', 'DELETE'])
|
||||
async def _(model_uuid: str) -> str:
|
||||
if quart.request.method == 'GET':
|
||||
model = await self.ap.model_service.get_llm_model(model_uuid)
|
||||
model = await self.ap.llm_model_service.get_llm_model(model_uuid)
|
||||
|
||||
if model is None:
|
||||
return self.http_status(404, -1, 'model not found')
|
||||
@@ -29,11 +29,11 @@ class LLMModelsRouterGroup(group.RouterGroup):
|
||||
elif quart.request.method == 'PUT':
|
||||
json_data = await quart.request.json
|
||||
|
||||
await self.ap.model_service.update_llm_model(model_uuid, json_data)
|
||||
await self.ap.llm_model_service.update_llm_model(model_uuid, json_data)
|
||||
|
||||
return self.success()
|
||||
elif quart.request.method == 'DELETE':
|
||||
await self.ap.model_service.delete_llm_model(model_uuid)
|
||||
await self.ap.llm_model_service.delete_llm_model(model_uuid)
|
||||
|
||||
return self.success()
|
||||
|
||||
@@ -41,6 +41,49 @@ class LLMModelsRouterGroup(group.RouterGroup):
|
||||
async def _(model_uuid: str) -> str:
|
||||
json_data = await quart.request.json
|
||||
|
||||
await self.ap.model_service.test_llm_model(model_uuid, json_data)
|
||||
await self.ap.llm_model_service.test_llm_model(model_uuid, json_data)
|
||||
|
||||
return self.success()
|
||||
|
||||
|
||||
@group.group_class('models/embedding', '/api/v1/provider/models/embedding')
|
||||
class EmbeddingModelsRouterGroup(group.RouterGroup):
|
||||
async def initialize(self) -> None:
|
||||
@self.route('', methods=['GET', 'POST'])
|
||||
async def _() -> str:
|
||||
if quart.request.method == 'GET':
|
||||
return self.success(data={'models': await self.ap.embedding_models_service.get_embedding_models()})
|
||||
elif quart.request.method == 'POST':
|
||||
json_data = await quart.request.json
|
||||
|
||||
model_uuid = await self.ap.embedding_models_service.create_embedding_model(json_data)
|
||||
|
||||
return self.success(data={'uuid': model_uuid})
|
||||
|
||||
@self.route('/<model_uuid>', methods=['GET', 'PUT', 'DELETE'])
|
||||
async def _(model_uuid: str) -> str:
|
||||
if quart.request.method == 'GET':
|
||||
model = await self.ap.embedding_models_service.get_embedding_model(model_uuid)
|
||||
|
||||
if model is None:
|
||||
return self.http_status(404, -1, 'model not found')
|
||||
|
||||
return self.success(data={'model': model})
|
||||
elif quart.request.method == 'PUT':
|
||||
json_data = await quart.request.json
|
||||
|
||||
await self.ap.embedding_models_service.update_embedding_model(model_uuid, json_data)
|
||||
|
||||
return self.success()
|
||||
elif quart.request.method == 'DELETE':
|
||||
await self.ap.embedding_models_service.delete_embedding_model(model_uuid)
|
||||
|
||||
return self.success()
|
||||
|
||||
@self.route('/<model_uuid>/test', methods=['POST'])
|
||||
async def _(model_uuid: str) -> str:
|
||||
json_data = await quart.request.json
|
||||
|
||||
await self.ap.embedding_models_service.test_embedding_model(model_uuid, json_data)
|
||||
|
||||
return self.success()
|
||||
|
||||
@@ -8,7 +8,8 @@ class RequestersRouterGroup(group.RouterGroup):
|
||||
async def initialize(self) -> None:
|
||||
@self.route('', methods=['GET'])
|
||||
async def _() -> quart.Response:
|
||||
return self.success(data={'requesters': self.ap.model_mgr.get_available_requesters_info()})
|
||||
model_type = quart.request.args.get('type', '')
|
||||
return self.success(data={'requesters': self.ap.model_mgr.get_available_requesters_info(model_type)})
|
||||
|
||||
@self.route('/<requester_name>', methods=['GET'])
|
||||
async def _(requester_name: str) -> quart.Response:
|
||||
|
||||
@@ -67,3 +67,19 @@ class UserRouterGroup(group.RouterGroup):
|
||||
await self.ap.user_service.reset_password(user_email, new_password)
|
||||
|
||||
return self.success(data={'user': user_email})
|
||||
|
||||
@self.route('/change-password', methods=['POST'], auth_type=group.AuthType.USER_TOKEN)
|
||||
async def _(user_email: str) -> str:
|
||||
json_data = await quart.request.json
|
||||
|
||||
current_password = json_data['current_password']
|
||||
new_password = json_data['new_password']
|
||||
|
||||
try:
|
||||
await self.ap.user_service.change_password(user_email, current_password, new_password)
|
||||
except argon2.exceptions.VerifyMismatchError:
|
||||
return self.http_status(400, -1, 'Current password is incorrect')
|
||||
except ValueError as e:
|
||||
return self.http_status(400, -1, str(e))
|
||||
|
||||
return self.success(data={'user': user_email})
|
||||
|
||||
@@ -14,11 +14,13 @@ from . import group
|
||||
from .groups import provider as groups_provider
|
||||
from .groups import platform as groups_platform
|
||||
from .groups import pipelines as groups_pipelines
|
||||
from .groups import knowledge as groups_knowledge
|
||||
|
||||
importutil.import_modules_in_pkg(groups)
|
||||
importutil.import_modules_in_pkg(groups_provider)
|
||||
importutil.import_modules_in_pkg(groups_platform)
|
||||
importutil.import_modules_in_pkg(groups_pipelines)
|
||||
importutil.import_modules_in_pkg(groups_knowledge)
|
||||
|
||||
|
||||
class HTTPController:
|
||||
|
||||
120
pkg/api/http/service/knowledge.py
Normal file
120
pkg/api/http/service/knowledge.py
Normal file
@@ -0,0 +1,120 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import uuid
|
||||
import sqlalchemy
|
||||
|
||||
from ....core import app
|
||||
from ....entity.persistence import rag as persistence_rag
|
||||
|
||||
|
||||
class KnowledgeService:
|
||||
"""知识库服务"""
|
||||
|
||||
ap: app.Application
|
||||
|
||||
def __init__(self, ap: app.Application) -> None:
|
||||
self.ap = ap
|
||||
|
||||
async def get_knowledge_bases(self) -> list[dict]:
|
||||
"""获取所有知识库"""
|
||||
result = await self.ap.persistence_mgr.execute_async(sqlalchemy.select(persistence_rag.KnowledgeBase))
|
||||
knowledge_bases = result.all()
|
||||
return [
|
||||
self.ap.persistence_mgr.serialize_model(persistence_rag.KnowledgeBase, knowledge_base)
|
||||
for knowledge_base in knowledge_bases
|
||||
]
|
||||
|
||||
async def get_knowledge_base(self, kb_uuid: str) -> dict | None:
|
||||
"""获取知识库"""
|
||||
result = await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.select(persistence_rag.KnowledgeBase).where(persistence_rag.KnowledgeBase.uuid == kb_uuid)
|
||||
)
|
||||
knowledge_base = result.first()
|
||||
if knowledge_base is None:
|
||||
return None
|
||||
return self.ap.persistence_mgr.serialize_model(persistence_rag.KnowledgeBase, knowledge_base)
|
||||
|
||||
async def create_knowledge_base(self, kb_data: dict) -> str:
|
||||
"""创建知识库"""
|
||||
kb_data['uuid'] = str(uuid.uuid4())
|
||||
await self.ap.persistence_mgr.execute_async(sqlalchemy.insert(persistence_rag.KnowledgeBase).values(kb_data))
|
||||
|
||||
kb = await self.get_knowledge_base(kb_data['uuid'])
|
||||
|
||||
await self.ap.rag_mgr.load_knowledge_base(kb)
|
||||
|
||||
return kb_data['uuid']
|
||||
|
||||
async def update_knowledge_base(self, kb_uuid: str, kb_data: dict) -> None:
|
||||
"""更新知识库"""
|
||||
if 'uuid' in kb_data:
|
||||
del kb_data['uuid']
|
||||
|
||||
if 'embedding_model_uuid' in kb_data:
|
||||
del kb_data['embedding_model_uuid']
|
||||
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.update(persistence_rag.KnowledgeBase)
|
||||
.values(kb_data)
|
||||
.where(persistence_rag.KnowledgeBase.uuid == kb_uuid)
|
||||
)
|
||||
await self.ap.rag_mgr.remove_knowledge_base_from_runtime(kb_uuid)
|
||||
|
||||
kb = await self.get_knowledge_base(kb_uuid)
|
||||
|
||||
await self.ap.rag_mgr.load_knowledge_base(kb)
|
||||
|
||||
async def store_file(self, kb_uuid: str, file_id: str) -> int:
|
||||
"""存储文件"""
|
||||
# await self.ap.persistence_mgr.execute_async(sqlalchemy.insert(persistence_rag.File).values(kb_id=kb_uuid, file_id=file_id))
|
||||
# await self.ap.rag_mgr.store_file(file_id)
|
||||
runtime_kb = await self.ap.rag_mgr.get_knowledge_base_by_uuid(kb_uuid)
|
||||
if runtime_kb is None:
|
||||
raise Exception('Knowledge base not found')
|
||||
return await runtime_kb.store_file(file_id)
|
||||
|
||||
async def retrieve_knowledge_base(self, kb_uuid: str, query: str) -> list[dict]:
|
||||
"""检索知识库"""
|
||||
runtime_kb = await self.ap.rag_mgr.get_knowledge_base_by_uuid(kb_uuid)
|
||||
if runtime_kb is None:
|
||||
raise Exception('Knowledge base not found')
|
||||
return [
|
||||
result.model_dump() for result in await runtime_kb.retrieve(query, runtime_kb.knowledge_base_entity.top_k)
|
||||
]
|
||||
|
||||
async def get_files_by_knowledge_base(self, kb_uuid: str) -> list[dict]:
|
||||
"""获取知识库文件"""
|
||||
result = await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.select(persistence_rag.File).where(persistence_rag.File.kb_id == kb_uuid)
|
||||
)
|
||||
files = result.all()
|
||||
return [self.ap.persistence_mgr.serialize_model(persistence_rag.File, file) for file in files]
|
||||
|
||||
async def delete_file(self, kb_uuid: str, file_id: str) -> None:
|
||||
"""删除文件"""
|
||||
runtime_kb = await self.ap.rag_mgr.get_knowledge_base_by_uuid(kb_uuid)
|
||||
if runtime_kb is None:
|
||||
raise Exception('Knowledge base not found')
|
||||
await runtime_kb.delete_file(file_id)
|
||||
|
||||
async def delete_knowledge_base(self, kb_uuid: str) -> None:
|
||||
"""删除知识库"""
|
||||
await self.ap.rag_mgr.delete_knowledge_base(kb_uuid)
|
||||
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.delete(persistence_rag.KnowledgeBase).where(persistence_rag.KnowledgeBase.uuid == kb_uuid)
|
||||
)
|
||||
|
||||
# delete files
|
||||
files = await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.select(persistence_rag.File).where(persistence_rag.File.kb_id == kb_uuid)
|
||||
)
|
||||
for file in files:
|
||||
# delete chunks
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.delete(persistence_rag.Chunk).where(persistence_rag.Chunk.file_id == file.uuid)
|
||||
)
|
||||
# delete file
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.delete(persistence_rag.File).where(persistence_rag.File.uuid == file.uuid)
|
||||
)
|
||||
@@ -10,7 +10,7 @@ from ....provider.modelmgr import requester as model_requester
|
||||
from ....provider import entities as llm_entities
|
||||
|
||||
|
||||
class ModelsService:
|
||||
class LLMModelsService:
|
||||
ap: app.Application
|
||||
|
||||
def __init__(self, ap: app.Application) -> None:
|
||||
@@ -101,5 +101,91 @@ class ModelsService:
|
||||
model=runtime_llm_model,
|
||||
messages=[llm_entities.Message(role='user', content='Hello, world!')],
|
||||
funcs=[],
|
||||
extra_args=model_data.get('extra_args', {}),
|
||||
)
|
||||
|
||||
|
||||
class EmbeddingModelsService:
|
||||
ap: app.Application
|
||||
|
||||
def __init__(self, ap: app.Application) -> None:
|
||||
self.ap = ap
|
||||
|
||||
async def get_embedding_models(self) -> list[dict]:
|
||||
result = await self.ap.persistence_mgr.execute_async(sqlalchemy.select(persistence_model.EmbeddingModel))
|
||||
|
||||
models = result.all()
|
||||
return [self.ap.persistence_mgr.serialize_model(persistence_model.EmbeddingModel, model) for model in models]
|
||||
|
||||
async def create_embedding_model(self, model_data: dict) -> str:
|
||||
model_data['uuid'] = str(uuid.uuid4())
|
||||
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.insert(persistence_model.EmbeddingModel).values(**model_data)
|
||||
)
|
||||
|
||||
embedding_model = await self.get_embedding_model(model_data['uuid'])
|
||||
|
||||
await self.ap.model_mgr.load_embedding_model(embedding_model)
|
||||
|
||||
return model_data['uuid']
|
||||
|
||||
async def get_embedding_model(self, model_uuid: str) -> dict | None:
|
||||
result = await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.select(persistence_model.EmbeddingModel).where(
|
||||
persistence_model.EmbeddingModel.uuid == model_uuid
|
||||
)
|
||||
)
|
||||
|
||||
model = result.first()
|
||||
|
||||
if model is None:
|
||||
return None
|
||||
|
||||
return self.ap.persistence_mgr.serialize_model(persistence_model.EmbeddingModel, model)
|
||||
|
||||
async def update_embedding_model(self, model_uuid: str, model_data: dict) -> None:
|
||||
if 'uuid' in model_data:
|
||||
del model_data['uuid']
|
||||
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.update(persistence_model.EmbeddingModel)
|
||||
.where(persistence_model.EmbeddingModel.uuid == model_uuid)
|
||||
.values(**model_data)
|
||||
)
|
||||
|
||||
await self.ap.model_mgr.remove_embedding_model(model_uuid)
|
||||
|
||||
embedding_model = await self.get_embedding_model(model_uuid)
|
||||
|
||||
await self.ap.model_mgr.load_embedding_model(embedding_model)
|
||||
|
||||
async def delete_embedding_model(self, model_uuid: str) -> None:
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.delete(persistence_model.EmbeddingModel).where(
|
||||
persistence_model.EmbeddingModel.uuid == model_uuid
|
||||
)
|
||||
)
|
||||
|
||||
await self.ap.model_mgr.remove_embedding_model(model_uuid)
|
||||
|
||||
async def test_embedding_model(self, model_uuid: str, model_data: dict) -> None:
|
||||
runtime_embedding_model: model_requester.RuntimeEmbeddingModel | None = None
|
||||
|
||||
if model_uuid != '_':
|
||||
for model in self.ap.model_mgr.embedding_models:
|
||||
if model.model_entity.uuid == model_uuid:
|
||||
runtime_embedding_model = model
|
||||
break
|
||||
|
||||
if runtime_embedding_model is None:
|
||||
raise Exception('model not found')
|
||||
|
||||
else:
|
||||
runtime_embedding_model = await self.ap.model_mgr.init_runtime_embedding_model(model_data)
|
||||
|
||||
await runtime_embedding_model.requester.invoke_embedding(
|
||||
model=runtime_embedding_model,
|
||||
input_text=['Hello, world!'],
|
||||
extra_args={},
|
||||
)
|
||||
|
||||
@@ -38,9 +38,21 @@ class PipelineService:
|
||||
self.ap.pipeline_config_meta_output.data,
|
||||
]
|
||||
|
||||
async def get_pipelines(self) -> list[dict]:
|
||||
result = await self.ap.persistence_mgr.execute_async(sqlalchemy.select(persistence_pipeline.LegacyPipeline))
|
||||
async def get_pipelines(self, sort_by: str = 'created_at', sort_order: str = 'DESC') -> list[dict]:
|
||||
query = sqlalchemy.select(persistence_pipeline.LegacyPipeline)
|
||||
|
||||
if sort_by == 'created_at':
|
||||
if sort_order == 'DESC':
|
||||
query = query.order_by(persistence_pipeline.LegacyPipeline.created_at.desc())
|
||||
else:
|
||||
query = query.order_by(persistence_pipeline.LegacyPipeline.created_at.asc())
|
||||
elif sort_by == 'updated_at':
|
||||
if sort_order == 'DESC':
|
||||
query = query.order_by(persistence_pipeline.LegacyPipeline.updated_at.desc())
|
||||
else:
|
||||
query = query.order_by(persistence_pipeline.LegacyPipeline.updated_at.asc())
|
||||
|
||||
result = await self.ap.persistence_mgr.execute_async(query)
|
||||
pipelines = result.all()
|
||||
return [
|
||||
self.ap.persistence_mgr.serialize_model(persistence_pipeline.LegacyPipeline, pipeline)
|
||||
|
||||
@@ -82,3 +82,18 @@ class UserService:
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.update(user.User).where(user.User.user == user_email).values(password=hashed_password)
|
||||
)
|
||||
|
||||
async def change_password(self, user_email: str, current_password: str, new_password: str) -> None:
|
||||
ph = argon2.PasswordHasher()
|
||||
|
||||
user_obj = await self.get_user_by_email(user_email)
|
||||
if user_obj is None:
|
||||
raise ValueError('User not found')
|
||||
|
||||
ph.verify(user_obj.password, current_password)
|
||||
|
||||
hashed_password = ph.hash(new_password)
|
||||
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.update(user.User).where(user.User.user == user_email).values(password=hashed_password)
|
||||
)
|
||||
|
||||
@@ -22,11 +22,14 @@ from ..api.http.service import user as user_service
|
||||
from ..api.http.service import model as model_service
|
||||
from ..api.http.service import pipeline as pipeline_service
|
||||
from ..api.http.service import bot as bot_service
|
||||
from ..api.http.service import knowledge as knowledge_service
|
||||
from ..discover import engine as discover_engine
|
||||
from ..storage import mgr as storagemgr
|
||||
from ..utils import logcache
|
||||
from . import taskmgr
|
||||
from . import entities as core_entities
|
||||
from ..rag.knowledge import kbmgr as rag_mgr
|
||||
from ..vector import mgr as vectordb_mgr
|
||||
|
||||
|
||||
class Application:
|
||||
@@ -47,6 +50,8 @@ class Application:
|
||||
|
||||
model_mgr: llm_model_mgr.ModelManager = None
|
||||
|
||||
rag_mgr: rag_mgr.RAGManager = None
|
||||
|
||||
# TODO move to pipeline
|
||||
tool_mgr: llm_tool_mgr.ToolManager = None
|
||||
|
||||
@@ -93,6 +98,8 @@ class Application:
|
||||
|
||||
persistence_mgr: persistencemgr.PersistenceManager = None
|
||||
|
||||
vector_db_mgr: vectordb_mgr.VectorDBManager = None
|
||||
|
||||
http_ctrl: http_controller.HTTPController = None
|
||||
|
||||
log_cache: logcache.LogCache = None
|
||||
@@ -103,12 +110,16 @@ class Application:
|
||||
|
||||
user_service: user_service.UserService = None
|
||||
|
||||
model_service: model_service.ModelsService = None
|
||||
llm_model_service: model_service.LLMModelsService = None
|
||||
|
||||
embedding_models_service: model_service.EmbeddingModelsService = None
|
||||
|
||||
pipeline_service: pipeline_service.PipelineService = None
|
||||
|
||||
bot_service: bot_service.BotService = None
|
||||
|
||||
knowledge_service: knowledge_service.KnowledgeService = None
|
||||
|
||||
def __init__(self):
|
||||
pass
|
||||
|
||||
@@ -143,6 +154,7 @@ class Application:
|
||||
name='http-api-controller',
|
||||
scopes=[core_entities.LifecycleControlScope.APPLICATION],
|
||||
)
|
||||
|
||||
self.task_mgr.create_task(
|
||||
never_ending(),
|
||||
name='never-ending-task',
|
||||
|
||||
@@ -87,7 +87,9 @@ class Query(pydantic.BaseModel):
|
||||
"""使用的函数,由前置处理器阶段设置"""
|
||||
|
||||
resp_messages: (
|
||||
typing.Optional[list[llm_entities.Message]] | typing.Optional[list[platform_message.MessageChain]]
|
||||
typing.Optional[list[llm_entities.Message]]
|
||||
| typing.Optional[list[platform_message.MessageChain]]
|
||||
| typing.Optional[list[llm_entities.MessageChunk]]
|
||||
) = []
|
||||
"""由Process阶段生成的回复消息对象列表"""
|
||||
|
||||
|
||||
@@ -9,6 +9,7 @@ from ...command import cmdmgr
|
||||
from ...provider.session import sessionmgr as llm_session_mgr
|
||||
from ...provider.modelmgr import modelmgr as llm_model_mgr
|
||||
from ...provider.tools import toolmgr as llm_tool_mgr
|
||||
from ...rag.knowledge import kbmgr as rag_mgr
|
||||
from ...platform import botmgr as im_mgr
|
||||
from ...persistence import mgr as persistencemgr
|
||||
from ...api.http.controller import main as http_controller
|
||||
@@ -16,9 +17,11 @@ from ...api.http.service import user as user_service
|
||||
from ...api.http.service import model as model_service
|
||||
from ...api.http.service import pipeline as pipeline_service
|
||||
from ...api.http.service import bot as bot_service
|
||||
from ...api.http.service import knowledge as knowledge_service
|
||||
from ...discover import engine as discover_engine
|
||||
from ...storage import mgr as storagemgr
|
||||
from ...utils import logcache
|
||||
from ...vector import mgr as vectordb_mgr
|
||||
from .. import taskmgr
|
||||
|
||||
|
||||
@@ -88,6 +91,15 @@ class BuildAppStage(stage.BootingStage):
|
||||
await pipeline_mgr.initialize()
|
||||
ap.pipeline_mgr = pipeline_mgr
|
||||
|
||||
rag_mgr_inst = rag_mgr.RAGManager(ap)
|
||||
await rag_mgr_inst.initialize()
|
||||
ap.rag_mgr = rag_mgr_inst
|
||||
|
||||
# 初始化向量数据库管理器
|
||||
vectordb_mgr_inst = vectordb_mgr.VectorDBManager(ap)
|
||||
await vectordb_mgr_inst.initialize()
|
||||
ap.vector_db_mgr = vectordb_mgr_inst
|
||||
|
||||
http_ctrl = http_controller.HTTPController(ap)
|
||||
await http_ctrl.initialize()
|
||||
ap.http_ctrl = http_ctrl
|
||||
@@ -95,8 +107,11 @@ class BuildAppStage(stage.BootingStage):
|
||||
user_service_inst = user_service.UserService(ap)
|
||||
ap.user_service = user_service_inst
|
||||
|
||||
model_service_inst = model_service.ModelsService(ap)
|
||||
ap.model_service = model_service_inst
|
||||
llm_model_service_inst = model_service.LLMModelsService(ap)
|
||||
ap.llm_model_service = llm_model_service_inst
|
||||
|
||||
embedding_models_service_inst = model_service.EmbeddingModelsService(ap)
|
||||
ap.embedding_models_service = embedding_models_service_inst
|
||||
|
||||
pipeline_service_inst = pipeline_service.PipelineService(ap)
|
||||
ap.pipeline_service = pipeline_service_inst
|
||||
@@ -104,5 +119,8 @@ class BuildAppStage(stage.BootingStage):
|
||||
bot_service_inst = bot_service.BotService(ap)
|
||||
ap.bot_service = bot_service_inst
|
||||
|
||||
knowledge_service_inst = knowledge_service.KnowledgeService(ap)
|
||||
ap.knowledge_service = knowledge_service_inst
|
||||
|
||||
ctrl = controller.Controller(ap)
|
||||
ap.ctrl = ctrl
|
||||
|
||||
@@ -23,3 +23,24 @@ class LLMModel(Base):
|
||||
server_default=sqlalchemy.func.now(),
|
||||
onupdate=sqlalchemy.func.now(),
|
||||
)
|
||||
|
||||
|
||||
class EmbeddingModel(Base):
|
||||
"""Embedding 模型"""
|
||||
|
||||
__tablename__ = 'embedding_models'
|
||||
|
||||
uuid = sqlalchemy.Column(sqlalchemy.String(255), primary_key=True, unique=True)
|
||||
name = sqlalchemy.Column(sqlalchemy.String(255), nullable=False)
|
||||
description = sqlalchemy.Column(sqlalchemy.String(255), nullable=False)
|
||||
requester = sqlalchemy.Column(sqlalchemy.String(255), nullable=False)
|
||||
requester_config = sqlalchemy.Column(sqlalchemy.JSON, nullable=False, default={})
|
||||
api_keys = sqlalchemy.Column(sqlalchemy.JSON, nullable=False)
|
||||
extra_args = sqlalchemy.Column(sqlalchemy.JSON, nullable=False, default={})
|
||||
created_at = sqlalchemy.Column(sqlalchemy.DateTime, nullable=False, server_default=sqlalchemy.func.now())
|
||||
updated_at = sqlalchemy.Column(
|
||||
sqlalchemy.DateTime,
|
||||
nullable=False,
|
||||
server_default=sqlalchemy.func.now(),
|
||||
onupdate=sqlalchemy.func.now(),
|
||||
)
|
||||
|
||||
@@ -20,7 +20,6 @@ class LegacyPipeline(Base):
|
||||
)
|
||||
for_version = sqlalchemy.Column(sqlalchemy.String(255), nullable=False)
|
||||
is_default = sqlalchemy.Column(sqlalchemy.Boolean, nullable=False, default=False)
|
||||
|
||||
stages = sqlalchemy.Column(sqlalchemy.JSON, nullable=False)
|
||||
config = sqlalchemy.Column(sqlalchemy.JSON, nullable=False)
|
||||
|
||||
@@ -43,3 +42,4 @@ class PipelineRunRecord(Base):
|
||||
started_at = sqlalchemy.Column(sqlalchemy.DateTime, nullable=False)
|
||||
finished_at = sqlalchemy.Column(sqlalchemy.DateTime, nullable=False)
|
||||
result = sqlalchemy.Column(sqlalchemy.JSON, nullable=False)
|
||||
knowledge_base_uuid = sqlalchemy.Column(sqlalchemy.String(255), nullable=True)
|
||||
|
||||
50
pkg/entity/persistence/rag.py
Normal file
50
pkg/entity/persistence/rag.py
Normal file
@@ -0,0 +1,50 @@
|
||||
import sqlalchemy
|
||||
from .base import Base
|
||||
|
||||
# Base = declarative_base()
|
||||
# DATABASE_URL = os.getenv('DATABASE_URL', 'sqlite:///./rag_knowledge.db')
|
||||
# print("Using database URL:", DATABASE_URL)
|
||||
|
||||
|
||||
# engine = create_engine(DATABASE_URL, connect_args={'check_same_thread': False})
|
||||
|
||||
# SessionLocal = sessionmaker(autocommit=False, autoflush=False, bind=engine)
|
||||
|
||||
# def create_db_and_tables():
|
||||
# """Creates all database tables defined in the Base."""
|
||||
# Base.metadata.create_all(bind=engine)
|
||||
# print('Database tables created or already exist.')
|
||||
|
||||
|
||||
class KnowledgeBase(Base):
|
||||
__tablename__ = 'knowledge_bases'
|
||||
uuid = sqlalchemy.Column(sqlalchemy.String(255), primary_key=True, unique=True)
|
||||
name = sqlalchemy.Column(sqlalchemy.String, index=True)
|
||||
description = sqlalchemy.Column(sqlalchemy.Text)
|
||||
created_at = sqlalchemy.Column(sqlalchemy.DateTime, default=sqlalchemy.func.now())
|
||||
embedding_model_uuid = sqlalchemy.Column(sqlalchemy.String, default='')
|
||||
top_k = sqlalchemy.Column(sqlalchemy.Integer, default=5)
|
||||
|
||||
|
||||
class File(Base):
|
||||
__tablename__ = 'knowledge_base_files'
|
||||
uuid = sqlalchemy.Column(sqlalchemy.String(255), primary_key=True, unique=True)
|
||||
kb_id = sqlalchemy.Column(sqlalchemy.String(255), nullable=True)
|
||||
file_name = sqlalchemy.Column(sqlalchemy.String)
|
||||
extension = sqlalchemy.Column(sqlalchemy.String)
|
||||
created_at = sqlalchemy.Column(sqlalchemy.DateTime, default=sqlalchemy.func.now())
|
||||
status = sqlalchemy.Column(sqlalchemy.String, default='pending') # pending, processing, completed, failed
|
||||
|
||||
|
||||
class Chunk(Base):
|
||||
__tablename__ = 'knowledge_base_chunks'
|
||||
uuid = sqlalchemy.Column(sqlalchemy.String(255), primary_key=True, unique=True)
|
||||
file_id = sqlalchemy.Column(sqlalchemy.String(255), nullable=True)
|
||||
text = sqlalchemy.Column(sqlalchemy.Text)
|
||||
|
||||
|
||||
# class Vector(Base):
|
||||
# __tablename__ = 'knowledge_base_vectors'
|
||||
# uuid = sqlalchemy.Column(sqlalchemy.String(255), primary_key=True, unique=True)
|
||||
# chunk_id = sqlalchemy.Column(sqlalchemy.String, nullable=True)
|
||||
# embedding = sqlalchemy.Column(sqlalchemy.LargeBinary)
|
||||
13
pkg/entity/persistence/vector.py
Normal file
13
pkg/entity/persistence/vector.py
Normal file
@@ -0,0 +1,13 @@
|
||||
from sqlalchemy import Column, Integer, ForeignKey, LargeBinary
|
||||
from sqlalchemy.orm import declarative_base, relationship
|
||||
|
||||
Base = declarative_base()
|
||||
|
||||
|
||||
class Vector(Base):
|
||||
__tablename__ = 'vectors'
|
||||
id = Column(Integer, primary_key=True, index=True)
|
||||
chunk_id = Column(Integer, ForeignKey('chunks.id'), unique=True)
|
||||
embedding = Column(LargeBinary) # Store embeddings as binary
|
||||
|
||||
chunk = relationship('Chunk', back_populates='vector')
|
||||
0
pkg/entity/rag/__init__.py
Normal file
0
pkg/entity/rag/__init__.py
Normal file
13
pkg/entity/rag/retriever.py
Normal file
13
pkg/entity/rag/retriever.py
Normal file
@@ -0,0 +1,13 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import pydantic
|
||||
|
||||
from typing import Any
|
||||
|
||||
|
||||
class RetrieveResultEntry(pydantic.BaseModel):
|
||||
id: str
|
||||
|
||||
metadata: dict[str, Any]
|
||||
|
||||
distance: float
|
||||
@@ -79,7 +79,7 @@ class PersistenceManager:
|
||||
'stages': pipeline_service.default_stage_order,
|
||||
'is_default': True,
|
||||
'name': 'ChatPipeline',
|
||||
'description': 'Default pipeline provided, your new bots will be automatically bound to this pipeline | 默认提供的流水线,您配置的机器人将自动绑定到此流水线',
|
||||
'description': 'Default pipeline, new bots will be bound to this pipeline | 默认提供的流水线,您配置的机器人将自动绑定到此流水线',
|
||||
'config': pipeline_config,
|
||||
}
|
||||
|
||||
|
||||
38
pkg/persistence/migrations/dbm004_rag_kb_uuid.py
Normal file
38
pkg/persistence/migrations/dbm004_rag_kb_uuid.py
Normal file
@@ -0,0 +1,38 @@
|
||||
from .. import migration
|
||||
|
||||
import sqlalchemy
|
||||
|
||||
from ...entity.persistence import pipeline as persistence_pipeline
|
||||
|
||||
|
||||
@migration.migration_class(4)
|
||||
class DBMigrateRAGKBUUID(migration.DBMigration):
|
||||
"""RAG知识库UUID"""
|
||||
|
||||
async def upgrade(self):
|
||||
"""升级"""
|
||||
# read all pipelines
|
||||
pipelines = await self.ap.persistence_mgr.execute_async(sqlalchemy.select(persistence_pipeline.LegacyPipeline))
|
||||
|
||||
for pipeline in pipelines:
|
||||
serialized_pipeline = self.ap.persistence_mgr.serialize_model(persistence_pipeline.LegacyPipeline, pipeline)
|
||||
|
||||
config = serialized_pipeline['config']
|
||||
|
||||
if 'knowledge-base' not in config['ai']['local-agent']:
|
||||
config['ai']['local-agent']['knowledge-base'] = ''
|
||||
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.update(persistence_pipeline.LegacyPipeline)
|
||||
.where(persistence_pipeline.LegacyPipeline.uuid == serialized_pipeline['uuid'])
|
||||
.values(
|
||||
{
|
||||
'config': config,
|
||||
'for_version': self.ap.ver_mgr.get_current_version(),
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
async def downgrade(self):
|
||||
"""降级"""
|
||||
pass
|
||||
@@ -0,0 +1,38 @@
|
||||
from .. import migration
|
||||
|
||||
import sqlalchemy
|
||||
|
||||
from ...entity.persistence import pipeline as persistence_pipeline
|
||||
|
||||
|
||||
@migration.migration_class(5)
|
||||
class DBMigratePipelineRemoveCotConfig(migration.DBMigration):
|
||||
"""Pipeline remove cot config"""
|
||||
|
||||
async def upgrade(self):
|
||||
"""Upgrade"""
|
||||
# read all pipelines
|
||||
pipelines = await self.ap.persistence_mgr.execute_async(sqlalchemy.select(persistence_pipeline.LegacyPipeline))
|
||||
|
||||
for pipeline in pipelines:
|
||||
serialized_pipeline = self.ap.persistence_mgr.serialize_model(persistence_pipeline.LegacyPipeline, pipeline)
|
||||
|
||||
config = serialized_pipeline['config']
|
||||
|
||||
if 'remove-think' not in config['output']['misc']:
|
||||
config['output']['misc']['remove-think'] = True
|
||||
|
||||
await self.ap.persistence_mgr.execute_async(
|
||||
sqlalchemy.update(persistence_pipeline.LegacyPipeline)
|
||||
.where(persistence_pipeline.LegacyPipeline.uuid == serialized_pipeline['uuid'])
|
||||
.values(
|
||||
{
|
||||
'config': config,
|
||||
'for_version': self.ap.ver_mgr.get_current_version(),
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
async def downgrade(self):
|
||||
"""Downgrade"""
|
||||
pass
|
||||
@@ -67,7 +67,7 @@ class ContentFilterStage(stage.PipelineStage):
|
||||
if query.pipeline_config['safety']['content-filter']['scope'] == 'output-msg':
|
||||
return entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||
if not message.strip():
|
||||
return entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||
return entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||
else:
|
||||
for filter in self.filter_chain:
|
||||
if filter_entities.EnableStage.PRE in filter.enable_stages:
|
||||
|
||||
@@ -93,12 +93,20 @@ class RuntimePipeline:
|
||||
query.message_event, platform_events.GroupMessage
|
||||
):
|
||||
result.user_notice.insert(0, platform_message.At(query.message_event.sender.id))
|
||||
|
||||
await query.adapter.reply_message(
|
||||
message_source=query.message_event,
|
||||
message=result.user_notice,
|
||||
quote_origin=query.pipeline_config['output']['misc']['quote-origin'],
|
||||
)
|
||||
if await query.adapter.is_stream_output_supported():
|
||||
await query.adapter.reply_message_chunk(
|
||||
message_source=query.message_event,
|
||||
bot_message=query.resp_messages[-1],
|
||||
message=result.user_notice,
|
||||
quote_origin=query.pipeline_config['output']['misc']['quote-origin'],
|
||||
is_final=[msg.is_final for msg in query.resp_messages][0]
|
||||
)
|
||||
else:
|
||||
await query.adapter.reply_message(
|
||||
message_source=query.message_event,
|
||||
message=result.user_notice,
|
||||
quote_origin=query.pipeline_config['output']['misc']['quote-origin'],
|
||||
)
|
||||
if result.debug_notice:
|
||||
self.ap.logger.debug(result.debug_notice)
|
||||
if result.console_notice:
|
||||
@@ -144,23 +152,27 @@ class RuntimePipeline:
|
||||
result = await result
|
||||
|
||||
if isinstance(result, pipeline_entities.StageProcessResult): # 直接返回结果
|
||||
self.ap.logger.debug(f'Stage {stage_container.inst_name} processed query {query} res {result}')
|
||||
self.ap.logger.debug(
|
||||
f'Stage {stage_container.inst_name} processed query {query.query_id} res {result.result_type}'
|
||||
)
|
||||
await self._check_output(query, result)
|
||||
|
||||
if result.result_type == pipeline_entities.ResultType.INTERRUPT:
|
||||
self.ap.logger.debug(f'Stage {stage_container.inst_name} interrupted query {query}')
|
||||
self.ap.logger.debug(f'Stage {stage_container.inst_name} interrupted query {query.query_id}')
|
||||
break
|
||||
elif result.result_type == pipeline_entities.ResultType.CONTINUE:
|
||||
query = result.new_query
|
||||
elif isinstance(result, typing.AsyncGenerator): # 生成器
|
||||
self.ap.logger.debug(f'Stage {stage_container.inst_name} processed query {query} gen')
|
||||
self.ap.logger.debug(f'Stage {stage_container.inst_name} processed query {query.query_id} gen')
|
||||
|
||||
async for sub_result in result:
|
||||
self.ap.logger.debug(f'Stage {stage_container.inst_name} processed query {query} res {sub_result}')
|
||||
self.ap.logger.debug(
|
||||
f'Stage {stage_container.inst_name} processed query {query.query_id} res {sub_result.result_type}'
|
||||
)
|
||||
await self._check_output(query, sub_result)
|
||||
|
||||
if sub_result.result_type == pipeline_entities.ResultType.INTERRUPT:
|
||||
self.ap.logger.debug(f'Stage {stage_container.inst_name} interrupted query {query}')
|
||||
self.ap.logger.debug(f'Stage {stage_container.inst_name} interrupted query {query.query_id}')
|
||||
break
|
||||
elif sub_result.result_type == pipeline_entities.ResultType.CONTINUE:
|
||||
query = sub_result.new_query
|
||||
@@ -192,7 +204,7 @@ class RuntimePipeline:
|
||||
if event_ctx.is_prevented_default():
|
||||
return
|
||||
|
||||
self.ap.logger.debug(f'Processing query {query}')
|
||||
self.ap.logger.debug(f'Processing query {query.query_id}')
|
||||
|
||||
await self._execute_from_stage(0, query)
|
||||
except Exception as e:
|
||||
@@ -200,7 +212,7 @@ class RuntimePipeline:
|
||||
self.ap.logger.error(f'处理请求时出错 query_id={query.query_id} stage={inst_name} : {e}')
|
||||
self.ap.logger.error(f'Traceback: {traceback.format_exc()}')
|
||||
finally:
|
||||
self.ap.logger.debug(f'Query {query} processed')
|
||||
self.ap.logger.debug(f'Query {query.query_id} processed')
|
||||
|
||||
|
||||
class PipelineManager:
|
||||
|
||||
@@ -80,14 +80,15 @@ class PreProcessor(stage.PipelineStage):
|
||||
if me.type == 'image_url':
|
||||
msg.content.remove(me)
|
||||
|
||||
content_list = []
|
||||
content_list: list[llm_entities.ContentElement] = []
|
||||
|
||||
plain_text = ''
|
||||
qoute_msg = query.pipeline_config['trigger'].get('misc', '').get('combine-quote-message')
|
||||
|
||||
# tidy the content_list
|
||||
# combine all text content into one, and put it in the first position
|
||||
for me in query.message_chain:
|
||||
if isinstance(me, platform_message.Plain):
|
||||
content_list.append(llm_entities.ContentElement.from_text(me.text))
|
||||
plain_text += me.text
|
||||
elif isinstance(me, platform_message.Image):
|
||||
if selected_runner != 'local-agent' or query.use_llm_model.model_entity.abilities.__contains__(
|
||||
@@ -106,6 +107,8 @@ class PreProcessor(stage.PipelineStage):
|
||||
if msg.base64 is not None:
|
||||
content_list.append(llm_entities.ContentElement.from_image_base64(msg.base64))
|
||||
|
||||
content_list.insert(0, llm_entities.ContentElement.from_text(plain_text))
|
||||
|
||||
query.variables['user_message_text'] = plain_text
|
||||
|
||||
query.user_message = llm_entities.Message(role='user', content=content_list)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import uuid
|
||||
import typing
|
||||
import traceback
|
||||
|
||||
@@ -22,11 +23,11 @@ class ChatMessageHandler(handler.MessageHandler):
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
) -> typing.AsyncGenerator[entities.StageProcessResult, None]:
|
||||
"""Process"""
|
||||
# Call API
|
||||
# generator
|
||||
"""处理"""
|
||||
# 调API
|
||||
# 生成器
|
||||
|
||||
# Trigger plugin event
|
||||
# 触发插件事件
|
||||
event_class = (
|
||||
events.PersonNormalMessageReceived
|
||||
if query.launcher_type == core_entities.LauncherTypes.PERSON
|
||||
@@ -46,7 +47,6 @@ class ChatMessageHandler(handler.MessageHandler):
|
||||
if event_ctx.is_prevented_default():
|
||||
if event_ctx.event.reply is not None:
|
||||
mc = platform_message.MessageChain(event_ctx.event.reply)
|
||||
|
||||
query.resp_messages.append(mc)
|
||||
|
||||
yield entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||
@@ -54,10 +54,14 @@ class ChatMessageHandler(handler.MessageHandler):
|
||||
yield entities.StageProcessResult(result_type=entities.ResultType.INTERRUPT, new_query=query)
|
||||
else:
|
||||
if event_ctx.event.alter is not None:
|
||||
# if isinstance(event_ctx.event, str): # Currently not considering multi-modal alter
|
||||
# if isinstance(event_ctx.event, str): # 现在暂时不考虑多模态alter
|
||||
query.user_message.content = event_ctx.event.alter
|
||||
|
||||
text_length = 0
|
||||
try:
|
||||
is_stream = await query.adapter.is_stream_output_supported()
|
||||
except AttributeError:
|
||||
is_stream = False
|
||||
|
||||
try:
|
||||
for r in runner_module.preregistered_runners:
|
||||
@@ -65,22 +69,42 @@ class ChatMessageHandler(handler.MessageHandler):
|
||||
runner = r(self.ap, query.pipeline_config)
|
||||
break
|
||||
else:
|
||||
raise ValueError(f'Request runner not found: {query.pipeline_config["ai"]["runner"]["runner"]}')
|
||||
raise ValueError(f'未找到请求运行器: {query.pipeline_config["ai"]["runner"]["runner"]}')
|
||||
if is_stream:
|
||||
resp_message_id = uuid.uuid4()
|
||||
await query.adapter.create_message_card(str(resp_message_id), query.message_event)
|
||||
async for result in runner.run(query):
|
||||
result.resp_message_id = str(resp_message_id)
|
||||
if query.resp_messages:
|
||||
query.resp_messages.pop()
|
||||
if query.resp_message_chain:
|
||||
query.resp_message_chain.pop()
|
||||
|
||||
async for result in runner.run(query):
|
||||
query.resp_messages.append(result)
|
||||
query.resp_messages.append(result)
|
||||
self.ap.logger.info(f'对话({query.query_id})流式响应: {self.cut_str(result.readable_str())}')
|
||||
|
||||
self.ap.logger.info(f'Response({query.query_id}): {self.cut_str(result.readable_str())}')
|
||||
if result.content is not None:
|
||||
text_length += len(result.content)
|
||||
|
||||
if result.content is not None:
|
||||
text_length += len(result.content)
|
||||
yield entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||
|
||||
yield entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||
else:
|
||||
async for result in runner.run(query):
|
||||
query.resp_messages.append(result)
|
||||
|
||||
self.ap.logger.info(f'对话({query.query_id})响应: {self.cut_str(result.readable_str())}')
|
||||
|
||||
if result.content is not None:
|
||||
text_length += len(result.content)
|
||||
|
||||
yield entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||
|
||||
query.session.using_conversation.messages.append(query.user_message)
|
||||
|
||||
query.session.using_conversation.messages.extend(query.resp_messages)
|
||||
except Exception as e:
|
||||
self.ap.logger.error(f'Request failed({query.query_id}): {type(e).__name__} {str(e)}')
|
||||
self.ap.logger.error(f'对话({query.query_id})请求失败: {type(e).__name__} {str(e)}')
|
||||
traceback.print_exc()
|
||||
|
||||
hide_exception_info = query.pipeline_config['output']['misc']['hide-exception']
|
||||
|
||||
@@ -93,4 +117,4 @@ class ChatMessageHandler(handler.MessageHandler):
|
||||
)
|
||||
finally:
|
||||
# TODO statistics
|
||||
pass
|
||||
pass
|
||||
@@ -7,6 +7,10 @@ import asyncio
|
||||
from ...platform.types import events as platform_events
|
||||
from ...platform.types import message as platform_message
|
||||
|
||||
from ...provider import entities as llm_entities
|
||||
|
||||
|
||||
|
||||
from .. import stage, entities
|
||||
from ...core import entities as core_entities
|
||||
|
||||
@@ -36,10 +40,22 @@ class SendResponseBackStage(stage.PipelineStage):
|
||||
|
||||
quote_origin = query.pipeline_config['output']['misc']['quote-origin']
|
||||
|
||||
await query.adapter.reply_message(
|
||||
message_source=query.message_event,
|
||||
message=query.resp_message_chain[-1],
|
||||
quote_origin=quote_origin,
|
||||
)
|
||||
has_chunks = any(isinstance(msg, llm_entities.MessageChunk) for msg in query.resp_messages)
|
||||
# TODO 命令与流式的兼容性问题
|
||||
if await query.adapter.is_stream_output_supported() and has_chunks:
|
||||
is_final = [msg.is_final for msg in query.resp_messages][0]
|
||||
await query.adapter.reply_message_chunk(
|
||||
message_source=query.message_event,
|
||||
bot_message=query.resp_messages[-1],
|
||||
message=query.resp_message_chain[-1],
|
||||
quote_origin=quote_origin,
|
||||
is_final=is_final,
|
||||
)
|
||||
else:
|
||||
await query.adapter.reply_message(
|
||||
message_source=query.message_event,
|
||||
message=query.resp_message_chain[-1],
|
||||
quote_origin=quote_origin,
|
||||
)
|
||||
|
||||
return entities.StageProcessResult(result_type=entities.ResultType.CONTINUE, new_query=query)
|
||||
|
||||
@@ -61,14 +61,40 @@ class MessagePlatformAdapter(metaclass=abc.ABCMeta):
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def reply_message_chunk(
|
||||
self,
|
||||
message_source: platform_events.MessageEvent,
|
||||
bot_message: dict,
|
||||
message: platform_message.MessageChain,
|
||||
quote_origin: bool = False,
|
||||
is_final: bool = False,
|
||||
):
|
||||
"""回复消息(流式输出)
|
||||
Args:
|
||||
message_source (platform.types.MessageEvent): 消息源事件
|
||||
message_id (int): 消息ID
|
||||
message (platform.types.MessageChain): 消息链
|
||||
quote_origin (bool, optional): 是否引用原消息. Defaults to False.
|
||||
is_final (bool, optional): 流式是否结束. Defaults to False.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def create_message_card(self, message_id: typing.Type[str, int], event: platform_events.MessageEvent) -> bool:
|
||||
"""创建卡片消息
|
||||
Args:
|
||||
message_id (str): 消息ID
|
||||
event (platform_events.MessageEvent): 消息源事件
|
||||
"""
|
||||
return False
|
||||
|
||||
async def is_muted(self, group_id: int) -> bool:
|
||||
"""获取账号是否在指定群被禁言"""
|
||||
raise NotImplementedError
|
||||
|
||||
def register_listener(
|
||||
self,
|
||||
event_type: typing.Type[platform_message.Event],
|
||||
callback: typing.Callable[[platform_message.Event, MessagePlatformAdapter], None],
|
||||
event_type: typing.Type[platform_events.Event],
|
||||
callback: typing.Callable[[platform_events.Event, MessagePlatformAdapter], None],
|
||||
):
|
||||
"""注册事件监听器
|
||||
|
||||
@@ -80,8 +106,8 @@ class MessagePlatformAdapter(metaclass=abc.ABCMeta):
|
||||
|
||||
def unregister_listener(
|
||||
self,
|
||||
event_type: typing.Type[platform_message.Event],
|
||||
callback: typing.Callable[[platform_message.Event, MessagePlatformAdapter], None],
|
||||
event_type: typing.Type[platform_events.Event],
|
||||
callback: typing.Callable[[platform_events.Event, MessagePlatformAdapter], None],
|
||||
):
|
||||
"""注销事件监听器
|
||||
|
||||
@@ -95,6 +121,10 @@ class MessagePlatformAdapter(metaclass=abc.ABCMeta):
|
||||
"""异步运行"""
|
||||
raise NotImplementedError
|
||||
|
||||
async def is_stream_output_supported(self) -> bool:
|
||||
"""是否支持流式输出"""
|
||||
return False
|
||||
|
||||
async def kill(self) -> bool:
|
||||
"""关闭适配器
|
||||
|
||||
@@ -136,7 +166,7 @@ class EventConverter:
|
||||
"""事件转换器基类"""
|
||||
|
||||
@staticmethod
|
||||
def yiri2target(event: typing.Type[platform_message.Event]):
|
||||
def yiri2target(event: typing.Type[platform_events.Event]):
|
||||
"""将源平台事件转换为目标平台事件
|
||||
|
||||
Args:
|
||||
@@ -148,7 +178,7 @@ class EventConverter:
|
||||
raise NotImplementedError
|
||||
|
||||
@staticmethod
|
||||
def target2yiri(event: typing.Any) -> platform_message.Event:
|
||||
def target2yiri(event: typing.Any) -> platform_events.Event:
|
||||
"""将目标平台事件的调用参数转换为源平台的事件参数对象
|
||||
|
||||
Args:
|
||||
|
||||
@@ -120,8 +120,10 @@ class RuntimeBot:
|
||||
if isinstance(e, asyncio.CancelledError):
|
||||
self.task_context.set_current_action('Exited.')
|
||||
return
|
||||
|
||||
traceback_str = traceback.format_exc()
|
||||
self.task_context.set_current_action('Exited with error.')
|
||||
await self.logger.error(f'平台适配器运行出错:\n{e}\n{traceback.format_exc()}')
|
||||
await self.logger.error(f'平台适配器运行出错:\n{e}\n{traceback_str}')
|
||||
|
||||
self.task_wrapper = self.ap.task_mgr.create_task(
|
||||
exception_wrapper(),
|
||||
|
||||
@@ -119,7 +119,7 @@ class EventLogger:
|
||||
async def _truncate_logs(self):
|
||||
if len(self.logs) > MAX_LOG_COUNT:
|
||||
for i in range(DELETE_COUNT_PER_TIME):
|
||||
for image_key in self.logs[i].images:
|
||||
for image_key in self.logs[i].images: # type: ignore
|
||||
await self.ap.storage_mgr.storage_provider.delete(image_key)
|
||||
self.logs = self.logs[DELETE_COUNT_PER_TIME:]
|
||||
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
from re import S
|
||||
import traceback
|
||||
import typing
|
||||
from libs.dingtalk_api.dingtalkevent import DingTalkEvent
|
||||
@@ -99,11 +100,15 @@ class DingTalkAdapter(adapter.MessagePlatformAdapter):
|
||||
message_converter: DingTalkMessageConverter = DingTalkMessageConverter()
|
||||
event_converter: DingTalkEventConverter = DingTalkEventConverter()
|
||||
config: dict
|
||||
card_instance_id_dict: dict # 回复卡片消息字典,key为消息id,value为回复卡片实例id,用于在流式消息时判断是否发送到指定卡片
|
||||
seq: int # 消息顺序,直接以seq作为标识
|
||||
|
||||
def __init__(self, config: dict, ap: app.Application, logger: EventLogger):
|
||||
self.config = config
|
||||
self.ap = ap
|
||||
self.logger = logger
|
||||
self.card_instance_id_dict = {}
|
||||
# self.seq = 1
|
||||
required_keys = [
|
||||
'client_id',
|
||||
'client_secret',
|
||||
@@ -139,6 +144,34 @@ class DingTalkAdapter(adapter.MessagePlatformAdapter):
|
||||
content, at = await DingTalkMessageConverter.yiri2target(message)
|
||||
await self.bot.send_message(content, incoming_message, at)
|
||||
|
||||
async def reply_message_chunk(
|
||||
self,
|
||||
message_source: platform_events.MessageEvent,
|
||||
bot_message,
|
||||
message: platform_message.MessageChain,
|
||||
quote_origin: bool = False,
|
||||
is_final: bool = False,
|
||||
):
|
||||
# event = await DingTalkEventConverter.yiri2target(
|
||||
# message_source,
|
||||
# )
|
||||
# incoming_message = event.incoming_message
|
||||
|
||||
# msg_id = incoming_message.message_id
|
||||
message_id = bot_message.resp_message_id
|
||||
msg_seq = bot_message.msg_sequence
|
||||
|
||||
if (msg_seq - 1) % 8 == 0 or is_final:
|
||||
|
||||
content, at = await DingTalkMessageConverter.yiri2target(message)
|
||||
|
||||
card_instance, card_instance_id = self.card_instance_id_dict[message_id]
|
||||
# print(card_instance_id)
|
||||
await self.bot.send_card_message(card_instance, card_instance_id, content, is_final)
|
||||
if is_final and bot_message.tool_calls is None:
|
||||
# self.seq = 1 # 消息回复结束之后重置seq
|
||||
self.card_instance_id_dict.pop(message_id) # 消息回复结束之后删除卡片实例id
|
||||
|
||||
async def send_message(self, target_type: str, target_id: str, message: platform_message.MessageChain):
|
||||
content = await DingTalkMessageConverter.yiri2target(message)
|
||||
if target_type == 'person':
|
||||
@@ -146,6 +179,20 @@ class DingTalkAdapter(adapter.MessagePlatformAdapter):
|
||||
if target_type == 'group':
|
||||
await self.bot.send_proactive_message_to_group(target_id, content)
|
||||
|
||||
async def is_stream_output_supported(self) -> bool:
|
||||
is_stream = False
|
||||
if self.config.get('enable-stream-reply', None):
|
||||
is_stream = True
|
||||
return is_stream
|
||||
|
||||
async def create_message_card(self, message_id, event):
|
||||
card_template_id = self.config['card_template_id']
|
||||
incoming_message = event.source_platform_object.incoming_message
|
||||
# message_id = incoming_message.message_id
|
||||
card_instance, card_instance_id = await self.bot.create_and_card(card_template_id, incoming_message)
|
||||
self.card_instance_id_dict[message_id] = (card_instance, card_instance_id)
|
||||
return True
|
||||
|
||||
def register_listener(
|
||||
self,
|
||||
event_type: typing.Type[platform_events.Event],
|
||||
|
||||
@@ -46,6 +46,23 @@ spec:
|
||||
type: boolean
|
||||
required: false
|
||||
default: true
|
||||
- name: enable-stream-reply
|
||||
label:
|
||||
en_US: Enable Stream Reply Mode
|
||||
zh_Hans: 启用钉钉卡片流式回复模式
|
||||
description:
|
||||
en_US: If enabled, the bot will use the stream of lark reply mode
|
||||
zh_Hans: 如果启用,将使用钉钉卡片流式方式来回复内容
|
||||
type: boolean
|
||||
required: true
|
||||
default: false
|
||||
- name: card_template_id
|
||||
label:
|
||||
en_US: card template id
|
||||
zh_Hans: 卡片模板ID
|
||||
type: string
|
||||
required: true
|
||||
default: "填写你的卡片template_id"
|
||||
execution:
|
||||
python:
|
||||
path: ./dingtalk.py
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -17,6 +17,7 @@ import aiohttp
|
||||
import lark_oapi.ws.exception
|
||||
import quart
|
||||
from lark_oapi.api.im.v1 import *
|
||||
from lark_oapi.api.cardkit.v1 import *
|
||||
|
||||
from .. import adapter
|
||||
from ...core import app
|
||||
@@ -320,6 +321,10 @@ class LarkEventConverter(adapter.EventConverter):
|
||||
)
|
||||
|
||||
|
||||
CARD_ID_CACHE_SIZE = 500
|
||||
CARD_ID_CACHE_MAX_LIFETIME = 20 * 60 # 20分钟
|
||||
|
||||
|
||||
class LarkAdapter(adapter.MessagePlatformAdapter):
|
||||
bot: lark_oapi.ws.Client
|
||||
api_client: lark_oapi.Client
|
||||
@@ -339,12 +344,20 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
||||
quart_app: quart.Quart
|
||||
ap: app.Application
|
||||
|
||||
|
||||
card_id_dict: dict[str, str] # 消息id到卡片id的映射,便于创建卡片后的发送消息到指定卡片
|
||||
|
||||
seq: int # 用于在发送卡片消息中识别消息顺序,直接以seq作为标识
|
||||
|
||||
def __init__(self, config: dict, ap: app.Application, logger: EventLogger):
|
||||
self.config = config
|
||||
self.ap = ap
|
||||
self.logger = logger
|
||||
self.quart_app = quart.Quart(__name__)
|
||||
self.listeners = {}
|
||||
self.card_id_dict = {}
|
||||
self.seq = 1
|
||||
|
||||
|
||||
@self.quart_app.route('/lark/callback', methods=['POST'])
|
||||
async def lark_callback():
|
||||
@@ -378,15 +391,15 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
||||
if 'im.message.receive_v1' == type:
|
||||
try:
|
||||
event = await self.event_converter.target2yiri(p2v1, self.api_client)
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in lark callback: {traceback.format_exc()}")
|
||||
except Exception:
|
||||
await self.logger.error(f'Error in lark callback: {traceback.format_exc()}')
|
||||
|
||||
if event.__class__ in self.listeners:
|
||||
await self.listeners[event.__class__](event, self)
|
||||
|
||||
return {'code': 200, 'message': 'ok'}
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in lark callback: {traceback.format_exc()}")
|
||||
except Exception:
|
||||
await self.logger.error(f'Error in lark callback: {traceback.format_exc()}')
|
||||
return {'code': 500, 'message': 'error'}
|
||||
|
||||
async def on_message(event: lark_oapi.im.v1.P2ImMessageReceiveV1):
|
||||
@@ -409,6 +422,216 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
||||
async def send_message(self, target_type: str, target_id: str, message: platform_message.MessageChain):
|
||||
pass
|
||||
|
||||
async def is_stream_output_supported(self) -> bool:
|
||||
is_stream = False
|
||||
if self.config.get('enable-stream-reply', None):
|
||||
is_stream = True
|
||||
return is_stream
|
||||
|
||||
async def create_card_id(self, message_id):
|
||||
try:
|
||||
self.ap.logger.debug('飞书支持stream输出,创建卡片......')
|
||||
|
||||
card_data = {"schema": "2.0", "config": {"update_multi": True, "streaming_mode": True,
|
||||
"streaming_config": {"print_step": {"default": 1},
|
||||
"print_frequency_ms": {"default": 70},
|
||||
"print_strategy": "fast"}},
|
||||
"body": {"direction": "vertical", "padding": "12px 12px 12px 12px", "elements": [{"tag": "div",
|
||||
"text": {
|
||||
"tag": "plain_text",
|
||||
"content": "LangBot",
|
||||
"text_size": "normal",
|
||||
"text_align": "left",
|
||||
"text_color": "default"},
|
||||
"icon": {
|
||||
"tag": "custom_icon",
|
||||
"img_key": "img_v3_02p3_05c65d5d-9bad-440a-a2fb-c89571bfd5bg"}},
|
||||
{
|
||||
"tag": "markdown",
|
||||
"content": "",
|
||||
"text_align": "left",
|
||||
"text_size": "normal",
|
||||
"margin": "0px 0px 0px 0px",
|
||||
"element_id": "streaming_txt"},
|
||||
{
|
||||
"tag": "markdown",
|
||||
"content": "",
|
||||
"text_align": "left",
|
||||
"text_size": "normal",
|
||||
"margin": "0px 0px 0px 0px"},
|
||||
{
|
||||
"tag": "column_set",
|
||||
"horizontal_spacing": "8px",
|
||||
"horizontal_align": "left",
|
||||
"columns": [
|
||||
{
|
||||
"tag": "column",
|
||||
"width": "weighted",
|
||||
"elements": [
|
||||
{
|
||||
"tag": "markdown",
|
||||
"content": "",
|
||||
"text_align": "left",
|
||||
"text_size": "normal",
|
||||
"margin": "0px 0px 0px 0px"},
|
||||
{
|
||||
"tag": "markdown",
|
||||
"content": "",
|
||||
"text_align": "left",
|
||||
"text_size": "normal",
|
||||
"margin": "0px 0px 0px 0px"},
|
||||
{
|
||||
"tag": "markdown",
|
||||
"content": "",
|
||||
"text_align": "left",
|
||||
"text_size": "normal",
|
||||
"margin": "0px 0px 0px 0px"}],
|
||||
"padding": "0px 0px 0px 0px",
|
||||
"direction": "vertical",
|
||||
"horizontal_spacing": "8px",
|
||||
"vertical_spacing": "2px",
|
||||
"horizontal_align": "left",
|
||||
"vertical_align": "top",
|
||||
"margin": "0px 0px 0px 0px",
|
||||
"weight": 1}],
|
||||
"margin": "0px 0px 0px 0px"},
|
||||
{"tag": "hr",
|
||||
"margin": "0px 0px 0px 0px"},
|
||||
{
|
||||
"tag": "column_set",
|
||||
"horizontal_spacing": "12px",
|
||||
"horizontal_align": "right",
|
||||
"columns": [
|
||||
{
|
||||
"tag": "column",
|
||||
"width": "weighted",
|
||||
"elements": [
|
||||
{
|
||||
"tag": "markdown",
|
||||
"content": "<font color=\"grey-600\">以上内容由 AI 生成,仅供参考。更多详细、准确信息可点击引用链接查看</font>",
|
||||
"text_align": "left",
|
||||
"text_size": "notation",
|
||||
"margin": "4px 0px 0px 0px",
|
||||
"icon": {
|
||||
"tag": "standard_icon",
|
||||
"token": "robot_outlined",
|
||||
"color": "grey"}}],
|
||||
"padding": "0px 0px 0px 0px",
|
||||
"direction": "vertical",
|
||||
"horizontal_spacing": "8px",
|
||||
"vertical_spacing": "8px",
|
||||
"horizontal_align": "left",
|
||||
"vertical_align": "top",
|
||||
"margin": "0px 0px 0px 0px",
|
||||
"weight": 1},
|
||||
{
|
||||
"tag": "column",
|
||||
"width": "20px",
|
||||
"elements": [
|
||||
{
|
||||
"tag": "button",
|
||||
"text": {
|
||||
"tag": "plain_text",
|
||||
"content": ""},
|
||||
"type": "text",
|
||||
"width": "fill",
|
||||
"size": "medium",
|
||||
"icon": {
|
||||
"tag": "standard_icon",
|
||||
"token": "thumbsup_outlined"},
|
||||
"hover_tips": {
|
||||
"tag": "plain_text",
|
||||
"content": "有帮助"},
|
||||
"margin": "0px 0px 0px 0px"}],
|
||||
"padding": "0px 0px 0px 0px",
|
||||
"direction": "vertical",
|
||||
"horizontal_spacing": "8px",
|
||||
"vertical_spacing": "8px",
|
||||
"horizontal_align": "left",
|
||||
"vertical_align": "top",
|
||||
"margin": "0px 0px 0px 0px"},
|
||||
{
|
||||
"tag": "column",
|
||||
"width": "30px",
|
||||
"elements": [
|
||||
{
|
||||
"tag": "button",
|
||||
"text": {
|
||||
"tag": "plain_text",
|
||||
"content": ""},
|
||||
"type": "text",
|
||||
"width": "default",
|
||||
"size": "medium",
|
||||
"icon": {
|
||||
"tag": "standard_icon",
|
||||
"token": "thumbdown_outlined"},
|
||||
"hover_tips": {
|
||||
"tag": "plain_text",
|
||||
"content": "无帮助"},
|
||||
"margin": "0px 0px 0px 0px"}],
|
||||
"padding": "0px 0px 0px 0px",
|
||||
"vertical_spacing": "8px",
|
||||
"horizontal_align": "left",
|
||||
"vertical_align": "top",
|
||||
"margin": "0px 0px 0px 0px"}],
|
||||
"margin": "0px 0px 4px 0px"}]}}
|
||||
# delay / fast 创建卡片模板,delay 延迟打印,fast 实时打印,可以自定义更好看的消息模板
|
||||
|
||||
request: CreateCardRequest = (
|
||||
CreateCardRequest.builder()
|
||||
.request_body(CreateCardRequestBody.builder().type('card_json').data(json.dumps(card_data)).build())
|
||||
.build()
|
||||
)
|
||||
|
||||
# 发起请求
|
||||
response: CreateCardResponse = self.api_client.cardkit.v1.card.create(request)
|
||||
|
||||
# 处理失败返回
|
||||
if not response.success():
|
||||
raise Exception(
|
||||
f'client.cardkit.v1.card.create failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}'
|
||||
)
|
||||
|
||||
self.ap.logger.debug(f'飞书卡片创建成功,卡片ID: {response.data.card_id}')
|
||||
self.card_id_dict[message_id] = response.data.card_id
|
||||
|
||||
card_id = response.data.card_id
|
||||
return card_id
|
||||
|
||||
except Exception as e:
|
||||
self.ap.logger.error(f'飞书卡片创建失败,错误信息: {e}')
|
||||
|
||||
async def create_message_card(self, message_id, event) -> str:
|
||||
"""
|
||||
创建卡片消息。
|
||||
使用卡片消息是因为普通消息更新次数有限制,而大模型流式返回结果可能很多而超过限制,而飞书卡片没有这个限制(api免费次数有限)
|
||||
"""
|
||||
# message_id = event.message_chain.message_id
|
||||
|
||||
card_id = await self.create_card_id(message_id)
|
||||
content = {
|
||||
'type': 'card',
|
||||
'data': {'card_id': card_id, 'template_variable': {'content': 'Thinking...'}},
|
||||
} # 当收到消息时发送消息模板,可添加模板变量,详情查看飞书中接口文档
|
||||
request: ReplyMessageRequest = (
|
||||
ReplyMessageRequest.builder()
|
||||
.message_id(event.message_chain.message_id)
|
||||
.request_body(
|
||||
ReplyMessageRequestBody.builder().content(json.dumps(content)).msg_type('interactive').build()
|
||||
)
|
||||
.build()
|
||||
)
|
||||
|
||||
# 发起请求
|
||||
response: ReplyMessageResponse = await self.api_client.im.v1.message.areply(request)
|
||||
|
||||
# 处理失败返回
|
||||
if not response.success():
|
||||
raise Exception(
|
||||
f'client.im.v1.message.reply failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}'
|
||||
)
|
||||
return True
|
||||
|
||||
async def reply_message(
|
||||
self,
|
||||
message_source: platform_events.MessageEvent,
|
||||
@@ -447,6 +670,64 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
||||
f'client.im.v1.message.reply failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}'
|
||||
)
|
||||
|
||||
async def reply_message_chunk(
|
||||
self,
|
||||
message_source: platform_events.MessageEvent,
|
||||
bot_message,
|
||||
message: platform_message.MessageChain,
|
||||
quote_origin: bool = False,
|
||||
is_final: bool = False,
|
||||
):
|
||||
"""
|
||||
回复消息变成更新卡片消息
|
||||
"""
|
||||
# self.seq += 1
|
||||
message_id = bot_message.resp_message_id
|
||||
msg_seq = bot_message.msg_sequence
|
||||
if msg_seq % 8 == 0 or is_final:
|
||||
|
||||
lark_message = await self.message_converter.yiri2target(message, self.api_client)
|
||||
|
||||
|
||||
text_message = ''
|
||||
for ele in lark_message[0]:
|
||||
if ele['tag'] == 'text':
|
||||
text_message += ele['text']
|
||||
elif ele['tag'] == 'md':
|
||||
text_message += ele['text']
|
||||
|
||||
# content = {
|
||||
# 'type': 'card_json',
|
||||
# 'data': {'card_id': self.card_id_dict[message_id], 'elements': {'content': text_message}},
|
||||
# }
|
||||
|
||||
request: ContentCardElementRequest = (
|
||||
ContentCardElementRequest.builder()
|
||||
.card_id(self.card_id_dict[message_id])
|
||||
.element_id('streaming_txt')
|
||||
.request_body(
|
||||
ContentCardElementRequestBody.builder()
|
||||
# .uuid("a0d69e20-1dd1-458b-k525-dfeca4015204")
|
||||
.content(text_message)
|
||||
.sequence(msg_seq)
|
||||
.build()
|
||||
)
|
||||
.build()
|
||||
)
|
||||
|
||||
if is_final and bot_message.tool_calls is None:
|
||||
# self.seq = 1 # 消息回复结束之后重置seq
|
||||
self.card_id_dict.pop(message_id) # 清理已经使用过的卡片
|
||||
# 发起请求
|
||||
response: ContentCardElementResponse = self.api_client.cardkit.v1.card_element.content(request)
|
||||
|
||||
# 处理失败返回
|
||||
if not response.success():
|
||||
raise Exception(
|
||||
f'client.im.v1.message.patch failed, code: {response.code}, msg: {response.msg}, log_id: {response.get_log_id()}, resp: \n{json.dumps(json.loads(response.raw.content), indent=4, ensure_ascii=False)}'
|
||||
)
|
||||
return
|
||||
|
||||
async def is_muted(self, group_id: int) -> bool:
|
||||
return False
|
||||
|
||||
@@ -492,4 +773,9 @@ class LarkAdapter(adapter.MessagePlatformAdapter):
|
||||
)
|
||||
|
||||
async def kill(self) -> bool:
|
||||
return False
|
||||
# 需要断开连接,不然旧的连接会继续运行,导致飞书消息来时会随机选择一个连接
|
||||
# 断开时lark.ws.Client的_receive_message_loop会打印error日志: receive message loop exit。然后进行重连,
|
||||
# 所以要设置_auto_reconnect=False,让其不重连。
|
||||
self.bot._auto_reconnect = False
|
||||
await self.bot._disconnect()
|
||||
return False
|
||||
@@ -65,6 +65,16 @@ spec:
|
||||
type: string
|
||||
required: true
|
||||
default: ""
|
||||
- name: enable-stream-reply
|
||||
label:
|
||||
en_US: Enable Stream Reply Mode
|
||||
zh_Hans: 启用飞书流式回复模式
|
||||
description:
|
||||
en_US: If enabled, the bot will use the stream of lark reply mode
|
||||
zh_Hans: 如果启用,将使用飞书流式方式来回复内容
|
||||
type: boolean
|
||||
required: true
|
||||
default: false
|
||||
execution:
|
||||
python:
|
||||
path: ./lark.py
|
||||
|
||||
@@ -72,8 +72,9 @@ class NakuruProjectMessageConverter(adapter_model.MessageConverter):
|
||||
content=content_list,
|
||||
)
|
||||
nakuru_forward_node_list.append(nakuru_forward_node)
|
||||
except Exception as e:
|
||||
except Exception:
|
||||
import traceback
|
||||
|
||||
traceback.print_exc()
|
||||
|
||||
nakuru_msg_list.append(nakuru_forward_node_list)
|
||||
@@ -276,7 +277,7 @@ class NakuruAdapter(adapter_model.MessagePlatformAdapter):
|
||||
# 注册监听器
|
||||
self.bot.receiver(source_cls.__name__)(listener_wrapper)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in nakuru register_listener: {traceback.format_exc()}")
|
||||
self.logger.error(f'Error in nakuru register_listener: {traceback.format_exc()}')
|
||||
raise e
|
||||
|
||||
def unregister_listener(
|
||||
|
||||
@@ -125,8 +125,8 @@ class OfficialAccountAdapter(adapter.MessagePlatformAdapter):
|
||||
self.bot_account_id = event.receiver_id
|
||||
try:
|
||||
return await callback(await self.event_converter.target2yiri(event), self)
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in officialaccount callback: {traceback.format_exc()}")
|
||||
except Exception:
|
||||
await self.logger.error(f'Error in officialaccount callback: {traceback.format_exc()}')
|
||||
|
||||
if event_type == platform_events.FriendMessage:
|
||||
self.bot.on_message('text')(on_message)
|
||||
|
||||
@@ -501,7 +501,7 @@ class OfficialAdapter(adapter_model.MessagePlatformAdapter):
|
||||
for event_handler in event_handler_mapping[event_type]:
|
||||
setattr(self.bot, event_handler, wrapper)
|
||||
except Exception as e:
|
||||
self.logger.error(f"Error in qqbotpy callback: {traceback.format_exc()}")
|
||||
self.logger.error(f'Error in qqbotpy callback: {traceback.format_exc()}')
|
||||
raise e
|
||||
|
||||
def unregister_listener(
|
||||
|
||||
@@ -154,10 +154,7 @@ class QQOfficialAdapter(adapter.MessagePlatformAdapter):
|
||||
raise ParamNotEnoughError('QQ官方机器人缺少相关配置项,请查看文档或联系管理员')
|
||||
|
||||
self.bot = QQOfficialClient(
|
||||
app_id=config['appid'],
|
||||
secret=config['secret'],
|
||||
token=config['token'],
|
||||
logger=self.logger
|
||||
app_id=config['appid'], secret=config['secret'], token=config['token'], logger=self.logger
|
||||
)
|
||||
|
||||
async def reply_message(
|
||||
@@ -224,8 +221,8 @@ class QQOfficialAdapter(adapter.MessagePlatformAdapter):
|
||||
self.bot_account_id = 'justbot'
|
||||
try:
|
||||
return await callback(await self.event_converter.target2yiri(event), self)
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in qqofficial callback: {traceback.format_exc()}")
|
||||
except Exception:
|
||||
await self.logger.error(f'Error in qqofficial callback: {traceback.format_exc()}')
|
||||
|
||||
if event_type == platform_events.FriendMessage:
|
||||
self.bot.on_message('DIRECT_MESSAGE_CREATE')(on_message)
|
||||
|
||||
@@ -104,7 +104,9 @@ class SlackAdapter(adapter.MessagePlatformAdapter):
|
||||
if missing_keys:
|
||||
raise ParamNotEnoughError('Slack机器人缺少相关配置项,请查看文档或联系管理员')
|
||||
|
||||
self.bot = SlackClient(bot_token=self.config['bot_token'], signing_secret=self.config['signing_secret'], logger=self.logger)
|
||||
self.bot = SlackClient(
|
||||
bot_token=self.config['bot_token'], signing_secret=self.config['signing_secret'], logger=self.logger
|
||||
)
|
||||
|
||||
async def reply_message(
|
||||
self,
|
||||
@@ -139,8 +141,8 @@ class SlackAdapter(adapter.MessagePlatformAdapter):
|
||||
self.bot_account_id = 'SlackBot'
|
||||
try:
|
||||
return await callback(await self.event_converter.target2yiri(event, self.bot), self)
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in slack callback: {traceback.format_exc()}")
|
||||
except Exception:
|
||||
await self.logger.error(f'Error in slack callback: {traceback.format_exc()}')
|
||||
|
||||
if event_type == platform_events.FriendMessage:
|
||||
self.bot.on_message('im')(on_message)
|
||||
|
||||
@@ -1,5 +1,6 @@
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
import telegram
|
||||
import telegram.ext
|
||||
from telegram import Update
|
||||
@@ -143,6 +144,10 @@ class TelegramAdapter(adapter.MessagePlatformAdapter):
|
||||
config: dict
|
||||
ap: app.Application
|
||||
|
||||
msg_stream_id: dict # 流式消息id字典,key为流式消息id,value为首次消息源id,用于在流式消息时判断编辑那条消息
|
||||
|
||||
seq: int # 消息中识别消息顺序,直接以seq作为标识
|
||||
|
||||
listeners: typing.Dict[
|
||||
typing.Type[platform_events.Event],
|
||||
typing.Callable[[platform_events.Event, adapter.MessagePlatformAdapter], None],
|
||||
@@ -152,6 +157,8 @@ class TelegramAdapter(adapter.MessagePlatformAdapter):
|
||||
self.config = config
|
||||
self.ap = ap
|
||||
self.logger = logger
|
||||
self.msg_stream_id = {}
|
||||
# self.seq = 1
|
||||
|
||||
async def telegram_callback(update: Update, context: ContextTypes.DEFAULT_TYPE):
|
||||
if update.message.from_user.is_bot:
|
||||
@@ -160,8 +167,9 @@ class TelegramAdapter(adapter.MessagePlatformAdapter):
|
||||
try:
|
||||
lb_event = await self.event_converter.target2yiri(update, self.bot, self.bot_account_id)
|
||||
await self.listeners[type(lb_event)](lb_event, self)
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in telegram callback: {traceback.format_exc()}")
|
||||
await self.is_stream_output_supported()
|
||||
except Exception:
|
||||
await self.logger.error(f'Error in telegram callback: {traceback.format_exc()}')
|
||||
|
||||
self.application = ApplicationBuilder().token(self.config['token']).build()
|
||||
self.bot = self.application.bot
|
||||
@@ -200,6 +208,70 @@ class TelegramAdapter(adapter.MessagePlatformAdapter):
|
||||
|
||||
await self.bot.send_message(**args)
|
||||
|
||||
async def reply_message_chunk(
|
||||
self,
|
||||
message_source: platform_events.MessageEvent,
|
||||
bot_message,
|
||||
message: platform_message.MessageChain,
|
||||
quote_origin: bool = False,
|
||||
is_final: bool = False,
|
||||
):
|
||||
msg_seq = bot_message.msg_sequence
|
||||
if (msg_seq - 1) % 8 == 0 or is_final:
|
||||
assert isinstance(message_source.source_platform_object, Update)
|
||||
components = await TelegramMessageConverter.yiri2target(message, self.bot)
|
||||
args = {}
|
||||
message_id = message_source.source_platform_object.message.id
|
||||
if quote_origin:
|
||||
args['reply_to_message_id'] = message_source.source_platform_object.message.id
|
||||
|
||||
component = components[0]
|
||||
if message_id not in self.msg_stream_id: # 当消息回复第一次时,发送新消息
|
||||
# time.sleep(0.6)
|
||||
if component['type'] == 'text':
|
||||
if self.config['markdown_card'] is True:
|
||||
content = telegramify_markdown.markdownify(
|
||||
content=component['text'],
|
||||
)
|
||||
else:
|
||||
content = component['text']
|
||||
args = {
|
||||
'chat_id': message_source.source_platform_object.effective_chat.id,
|
||||
'text': content,
|
||||
}
|
||||
if self.config['markdown_card'] is True:
|
||||
args['parse_mode'] = 'MarkdownV2'
|
||||
|
||||
send_msg = await self.bot.send_message(**args)
|
||||
send_msg_id = send_msg.message_id
|
||||
self.msg_stream_id[message_id] = send_msg_id
|
||||
else: # 存在消息的时候直接编辑消息1
|
||||
if component['type'] == 'text':
|
||||
if self.config['markdown_card'] is True:
|
||||
content = telegramify_markdown.markdownify(
|
||||
content=component['text'],
|
||||
)
|
||||
else:
|
||||
content = component['text']
|
||||
args = {
|
||||
'message_id': self.msg_stream_id[message_id],
|
||||
'chat_id': message_source.source_platform_object.effective_chat.id,
|
||||
'text': content,
|
||||
}
|
||||
if self.config['markdown_card'] is True:
|
||||
args['parse_mode'] = 'MarkdownV2'
|
||||
|
||||
await self.bot.edit_message_text(**args)
|
||||
if is_final and bot_message.tool_calls is None:
|
||||
# self.seq = 1 # 消息回复结束之后重置seq
|
||||
self.msg_stream_id.pop(message_id) # 消息回复结束之后删除流式消息id
|
||||
|
||||
async def is_stream_output_supported(self) -> bool:
|
||||
is_stream = False
|
||||
if self.config.get('enable-stream-reply', None):
|
||||
is_stream = True
|
||||
return is_stream
|
||||
|
||||
async def is_muted(self, group_id: int) -> bool:
|
||||
return False
|
||||
|
||||
@@ -222,8 +294,12 @@ class TelegramAdapter(adapter.MessagePlatformAdapter):
|
||||
self.bot_account_id = (await self.bot.get_me()).username
|
||||
await self.application.updater.start_polling(allowed_updates=Update.ALL_TYPES)
|
||||
await self.application.start()
|
||||
await self.logger.info('Telegram adapter running')
|
||||
|
||||
async def kill(self) -> bool:
|
||||
if self.application.running:
|
||||
await self.application.stop()
|
||||
if self.application.updater:
|
||||
await self.application.updater.stop()
|
||||
await self.logger.info('Telegram adapter stopped')
|
||||
return True
|
||||
|
||||
@@ -25,6 +25,16 @@ spec:
|
||||
type: boolean
|
||||
required: false
|
||||
default: true
|
||||
- name: enable-stream-reply
|
||||
label:
|
||||
en_US: Enable Stream Reply Mode
|
||||
zh_Hans: 启用电报流式回复模式
|
||||
description:
|
||||
en_US: If enabled, the bot will use the stream of telegram reply mode
|
||||
zh_Hans: 如果启用,将使用电报流式方式来回复内容
|
||||
type: boolean
|
||||
required: true
|
||||
default: false
|
||||
execution:
|
||||
python:
|
||||
path: ./telegram.py
|
||||
|
||||
@@ -19,17 +19,20 @@ class WebChatMessage(BaseModel):
|
||||
content: str
|
||||
message_chain: list[dict]
|
||||
timestamp: str
|
||||
is_final: bool = False
|
||||
|
||||
|
||||
class WebChatSession:
|
||||
id: str
|
||||
message_lists: dict[str, list[WebChatMessage]] = {}
|
||||
resp_waiters: dict[int, asyncio.Future[WebChatMessage]]
|
||||
resp_queues: dict[int, asyncio.Queue[WebChatMessage]]
|
||||
|
||||
def __init__(self, id: str):
|
||||
self.id = id
|
||||
self.message_lists = {}
|
||||
self.resp_waiters = {}
|
||||
self.resp_queues = {}
|
||||
|
||||
def get_message_list(self, pipeline_uuid: str) -> list[WebChatMessage]:
|
||||
if pipeline_uuid not in self.message_lists:
|
||||
@@ -49,6 +52,8 @@ class WebChatAdapter(msadapter.MessagePlatformAdapter):
|
||||
typing.Callable[[platform_events.Event, msadapter.MessagePlatformAdapter], None],
|
||||
] = {}
|
||||
|
||||
is_stream: bool
|
||||
|
||||
def __init__(self, config: dict, ap: app.Application, logger: EventLogger):
|
||||
self.ap = ap
|
||||
self.logger = logger
|
||||
@@ -59,6 +64,8 @@ class WebChatAdapter(msadapter.MessagePlatformAdapter):
|
||||
|
||||
self.bot_account_id = 'webchatbot'
|
||||
|
||||
self.is_stream = False
|
||||
|
||||
async def send_message(
|
||||
self,
|
||||
target_type: str,
|
||||
@@ -102,12 +109,53 @@ class WebChatAdapter(msadapter.MessagePlatformAdapter):
|
||||
|
||||
# notify waiter
|
||||
if isinstance(message_source, platform_events.FriendMessage):
|
||||
self.webchat_person_session.resp_waiters[message_source.message_chain.message_id].set_result(message_data)
|
||||
await self.webchat_person_session.resp_queues[message_source.message_chain.message_id].put(message_data)
|
||||
elif isinstance(message_source, platform_events.GroupMessage):
|
||||
self.webchat_group_session.resp_waiters[message_source.message_chain.message_id].set_result(message_data)
|
||||
await self.webchat_group_session.resp_queues[message_source.message_chain.message_id].put(message_data)
|
||||
|
||||
return message_data.model_dump()
|
||||
|
||||
async def reply_message_chunk(
|
||||
self,
|
||||
message_source: platform_events.MessageEvent,
|
||||
bot_message,
|
||||
message: platform_message.MessageChain,
|
||||
quote_origin: bool = False,
|
||||
is_final: bool = False,
|
||||
) -> dict:
|
||||
"""回复消息"""
|
||||
message_data = WebChatMessage(
|
||||
id=-1,
|
||||
role='assistant',
|
||||
content=str(message),
|
||||
message_chain=[component.__dict__ for component in message],
|
||||
timestamp=datetime.now().isoformat(),
|
||||
)
|
||||
|
||||
# notify waiter
|
||||
session = (
|
||||
self.webchat_group_session
|
||||
if isinstance(message_source, platform_events.GroupMessage)
|
||||
else self.webchat_person_session
|
||||
)
|
||||
if message_source.message_chain.message_id not in session.resp_waiters:
|
||||
# session.resp_waiters[message_source.message_chain.message_id] = asyncio.Queue()
|
||||
queue = session.resp_queues[message_source.message_chain.message_id]
|
||||
|
||||
# if isinstance(message_source, platform_events.FriendMessage):
|
||||
# queue = self.webchat_person_session.resp_queues[message_source.message_chain.message_id]
|
||||
# elif isinstance(message_source, platform_events.GroupMessage):
|
||||
# queue = self.webchat_group_session.resp_queues[message_source.message_chain.message_id]
|
||||
if is_final and bot_message.tool_calls is None:
|
||||
message_data.is_final = True
|
||||
# print(message_data)
|
||||
await queue.put(message_data)
|
||||
|
||||
return message_data.model_dump()
|
||||
|
||||
async def is_stream_output_supported(self) -> bool:
|
||||
return self.is_stream
|
||||
|
||||
def register_listener(
|
||||
self,
|
||||
event_type: typing.Type[platform_events.Event],
|
||||
@@ -140,8 +188,13 @@ class WebChatAdapter(msadapter.MessagePlatformAdapter):
|
||||
await self.logger.info('WebChat调试适配器正在停止')
|
||||
|
||||
async def send_webchat_message(
|
||||
self, pipeline_uuid: str, session_type: str, message_chain_obj: typing.List[dict]
|
||||
self,
|
||||
pipeline_uuid: str,
|
||||
session_type: str,
|
||||
message_chain_obj: typing.List[dict],
|
||||
is_stream: bool = False,
|
||||
) -> dict:
|
||||
self.is_stream = is_stream
|
||||
"""发送调试消息到流水线"""
|
||||
if session_type == 'person':
|
||||
use_session = self.webchat_person_session
|
||||
@@ -152,6 +205,9 @@ class WebChatAdapter(msadapter.MessagePlatformAdapter):
|
||||
|
||||
message_id = len(use_session.get_message_list(pipeline_uuid)) + 1
|
||||
|
||||
use_session.resp_queues[message_id] = asyncio.Queue()
|
||||
logger.debug(f'Initialized queue for message_id: {message_id}')
|
||||
|
||||
use_session.get_message_list(pipeline_uuid).append(
|
||||
WebChatMessage(
|
||||
id=message_id,
|
||||
@@ -185,21 +241,46 @@ class WebChatAdapter(msadapter.MessagePlatformAdapter):
|
||||
|
||||
self.ap.platform_mgr.webchat_proxy_bot.bot_entity.use_pipeline_uuid = pipeline_uuid
|
||||
|
||||
# trigger pipeline
|
||||
if event.__class__ in self.listeners:
|
||||
await self.listeners[event.__class__](event, self)
|
||||
|
||||
# set waiter
|
||||
waiter = asyncio.Future[WebChatMessage]()
|
||||
use_session.resp_waiters[message_id] = waiter
|
||||
waiter.add_done_callback(lambda future: use_session.resp_waiters.pop(message_id))
|
||||
if is_stream:
|
||||
queue = use_session.resp_queues[message_id]
|
||||
msg_id = len(use_session.get_message_list(pipeline_uuid)) + 1
|
||||
while True:
|
||||
resp_message = await queue.get()
|
||||
resp_message.id = msg_id
|
||||
if resp_message.is_final:
|
||||
resp_message.id = msg_id
|
||||
use_session.get_message_list(pipeline_uuid).append(resp_message)
|
||||
yield resp_message.model_dump()
|
||||
break
|
||||
yield resp_message.model_dump()
|
||||
use_session.resp_queues.pop(message_id)
|
||||
|
||||
resp_message = await waiter
|
||||
else: # non-stream
|
||||
# set waiter
|
||||
# waiter = asyncio.Future[WebChatMessage]()
|
||||
# use_session.resp_waiters[message_id] = waiter
|
||||
# # waiter.add_done_callback(lambda future: use_session.resp_waiters.pop(message_id))
|
||||
#
|
||||
# resp_message = await waiter
|
||||
#
|
||||
# resp_message.id = len(use_session.get_message_list(pipeline_uuid)) + 1
|
||||
#
|
||||
# use_session.get_message_list(pipeline_uuid).append(resp_message)
|
||||
#
|
||||
# yield resp_message.model_dump()
|
||||
msg_id = len(use_session.get_message_list(pipeline_uuid)) + 1
|
||||
|
||||
resp_message.id = len(use_session.get_message_list(pipeline_uuid)) + 1
|
||||
queue = use_session.resp_queues[message_id]
|
||||
resp_message = await queue.get()
|
||||
use_session.get_message_list(pipeline_uuid).append(resp_message)
|
||||
resp_message.id = msg_id
|
||||
resp_message.is_final = True
|
||||
|
||||
use_session.get_message_list(pipeline_uuid).append(resp_message)
|
||||
|
||||
return resp_message.model_dump()
|
||||
yield resp_message.model_dump()
|
||||
|
||||
def get_webchat_messages(self, pipeline_uuid: str, session_type: str) -> list[dict]:
|
||||
"""获取调试消息历史"""
|
||||
|
||||
@@ -9,7 +9,8 @@ metadata:
|
||||
en_US: "WebChat adapter for pipeline debugging"
|
||||
zh_Hans: "用于流水线调试的网页聊天适配器"
|
||||
icon: ""
|
||||
spec: {}
|
||||
spec:
|
||||
config: []
|
||||
execution:
|
||||
python:
|
||||
path: "webchat.py"
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
import requests
|
||||
import websockets
|
||||
import websocket
|
||||
import json
|
||||
import time
|
||||
@@ -10,53 +9,42 @@ from libs.wechatpad_api.client import WeChatPadClient
|
||||
import typing
|
||||
import asyncio
|
||||
import traceback
|
||||
import time
|
||||
import re
|
||||
import base64
|
||||
import uuid
|
||||
import json
|
||||
import os
|
||||
import copy
|
||||
import datetime
|
||||
import threading
|
||||
|
||||
import quart
|
||||
import aiohttp
|
||||
|
||||
from .. import adapter
|
||||
from ...pipeline.longtext.strategies import forward
|
||||
from ...core import app
|
||||
from ..types import message as platform_message
|
||||
from ..types import events as platform_events
|
||||
from ..types import entities as platform_entities
|
||||
from ...utils import image
|
||||
from ..logger import EventLogger
|
||||
import xml.etree.ElementTree as ET
|
||||
from typing import Optional, List, Tuple
|
||||
from typing import Optional, Tuple
|
||||
from functools import partial
|
||||
import logging
|
||||
|
||||
class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
|
||||
class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
def __init__(self, config: dict, logger: logging.Logger):
|
||||
self.config = config
|
||||
self.bot = WeChatPadClient(self.config["wechatpad_url"],self.config["token"])
|
||||
self.bot = WeChatPadClient(self.config['wechatpad_url'], self.config['token'])
|
||||
self.logger = logger
|
||||
|
||||
@staticmethod
|
||||
async def yiri2target(
|
||||
message_chain: platform_message.MessageChain
|
||||
) -> list[dict]:
|
||||
async def yiri2target(message_chain: platform_message.MessageChain) -> list[dict]:
|
||||
content_list = []
|
||||
current_file_path = os.path.abspath(__file__)
|
||||
|
||||
|
||||
|
||||
for component in message_chain:
|
||||
if isinstance(component, platform_message.At):
|
||||
content_list.append({"type": "at", "target": component.target})
|
||||
if isinstance(component, platform_message.AtAll):
|
||||
content_list.append({'type': 'at', 'target': 'all'})
|
||||
elif isinstance(component, platform_message.At):
|
||||
content_list.append({'type': 'at', 'target': component.target})
|
||||
elif isinstance(component, platform_message.Plain):
|
||||
content_list.append({"type": "text", "content": component.text})
|
||||
content_list.append({'type': 'text', 'content': component.text})
|
||||
elif isinstance(component, platform_message.Image):
|
||||
if component.url:
|
||||
async with httpx.AsyncClient() as client:
|
||||
@@ -68,15 +56,16 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
else:
|
||||
raise Exception('获取文件失败')
|
||||
# pass
|
||||
content_list.append({"type": "image", "image": base64_str})
|
||||
content_list.append({'type': 'image', 'image': base64_str})
|
||||
elif component.base64:
|
||||
content_list.append({"type": "image", "image": component.base64})
|
||||
content_list.append({'type': 'image', 'image': component.base64})
|
||||
|
||||
elif isinstance(component, platform_message.WeChatEmoji):
|
||||
content_list.append(
|
||||
{'type': 'WeChatEmoji', 'emoji_md5': component.emoji_md5, 'emoji_size': component.emoji_size})
|
||||
{'type': 'WeChatEmoji', 'emoji_md5': component.emoji_md5, 'emoji_size': component.emoji_size}
|
||||
)
|
||||
elif isinstance(component, platform_message.Voice):
|
||||
content_list.append({"type": "voice", "data": component.url, "duration": component.length, "forma": 0})
|
||||
content_list.append({'type': 'voice', 'data': component.url, 'duration': component.length, 'forma': 0})
|
||||
elif isinstance(component, platform_message.WeChatAppMsg):
|
||||
content_list.append({'type': 'WeChatAppMsg', 'app_msg': component.app_msg})
|
||||
elif isinstance(component, platform_message.Forward):
|
||||
@@ -86,37 +75,37 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
|
||||
return content_list
|
||||
|
||||
|
||||
async def target2yiri(
|
||||
self,
|
||||
message: dict,
|
||||
bot_account_id: str,
|
||||
self,
|
||||
message: dict,
|
||||
bot_account_id: str,
|
||||
) -> platform_message.MessageChain:
|
||||
"""外部消息转平台消息"""
|
||||
# 数据预处理
|
||||
message_list = []
|
||||
bot_wxid = self.config['wxid']
|
||||
ats_bot = False # 是否被@
|
||||
content = message["content"]["str"]
|
||||
content = message['content']['str']
|
||||
content_no_preifx = content # 群消息则去掉前缀
|
||||
is_group_message = self._is_group_message(message)
|
||||
if is_group_message:
|
||||
ats_bot = self._ats_bot(message, bot_account_id)
|
||||
self.logger.info(f"ats_bot: {ats_bot}; bot_account_id: {bot_account_id}; bot_wxid: {bot_wxid}")
|
||||
if "@所有人" in content:
|
||||
|
||||
self.logger.info(f'ats_bot: {ats_bot}; bot_account_id: {bot_account_id}; bot_wxid: {bot_wxid}')
|
||||
if '@所有人' in content:
|
||||
message_list.append(platform_message.AtAll())
|
||||
elif ats_bot:
|
||||
if ats_bot:
|
||||
message_list.append(platform_message.At(target=bot_account_id))
|
||||
|
||||
|
||||
# 解析@信息并生成At组件
|
||||
at_targets = self._extract_at_targets(message)
|
||||
for target_id in at_targets:
|
||||
if target_id != bot_wxid: # 避免重复添加机器人的At
|
||||
message_list.append(platform_message.At(target=target_id))
|
||||
|
||||
|
||||
content_no_preifx, _ = self._extract_content_and_sender(content)
|
||||
|
||||
msg_type = message["msg_type"]
|
||||
msg_type = message['msg_type']
|
||||
|
||||
# 映射消息类型到处理器方法
|
||||
handler_map = {
|
||||
@@ -138,11 +127,7 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
|
||||
return platform_message.MessageChain(message_list)
|
||||
|
||||
async def _handler_text(
|
||||
self,
|
||||
message: Optional[dict],
|
||||
content_no_preifx: str
|
||||
) -> platform_message.MessageChain:
|
||||
async def _handler_text(self, message: Optional[dict], content_no_preifx: str) -> platform_message.MessageChain:
|
||||
"""处理文本消息 (msg_type=1)"""
|
||||
if message and self._is_group_message(message):
|
||||
pattern = r'@\S{1,20}'
|
||||
@@ -150,16 +135,12 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
|
||||
return platform_message.MessageChain([platform_message.Plain(content_no_preifx)])
|
||||
|
||||
async def _handler_image(
|
||||
self,
|
||||
message: Optional[dict],
|
||||
content_no_preifx: str
|
||||
) -> platform_message.MessageChain:
|
||||
async def _handler_image(self, message: Optional[dict], content_no_preifx: str) -> platform_message.MessageChain:
|
||||
"""处理图像消息 (msg_type=3)"""
|
||||
try:
|
||||
image_xml = content_no_preifx
|
||||
if not image_xml:
|
||||
return platform_message.MessageChain([platform_message.Unknown("[图片内容为空]")])
|
||||
return platform_message.MessageChain([platform_message.Unknown('[图片内容为空]')])
|
||||
root = ET.fromstring(image_xml)
|
||||
|
||||
# 提取img标签的属性
|
||||
@@ -169,28 +150,22 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
cdnthumburl = img_tag.get('cdnthumburl')
|
||||
# cdnmidimgurl = img_tag.get('cdnmidimgurl')
|
||||
|
||||
|
||||
image_data = self.bot.cdn_download(aeskey=aeskey, file_type=1, file_url=cdnthumburl)
|
||||
if image_data["Data"]['FileData'] == '':
|
||||
if image_data['Data']['FileData'] == '':
|
||||
image_data = self.bot.cdn_download(aeskey=aeskey, file_type=2, file_url=cdnthumburl)
|
||||
base64_str = image_data["Data"]['FileData']
|
||||
base64_str = image_data['Data']['FileData']
|
||||
# self.logger.info(f"data:image/png;base64,{base64_str}")
|
||||
|
||||
|
||||
elements = [
|
||||
platform_message.Image(base64=f"data:image/png;base64,{base64_str}"),
|
||||
platform_message.Image(base64=f'data:image/png;base64,{base64_str}'),
|
||||
# platform_message.WeChatForwardImage(xml_data=image_xml) # 微信消息转发
|
||||
]
|
||||
return platform_message.MessageChain(elements)
|
||||
except Exception as e:
|
||||
self.logger.error(f"处理图片失败: {str(e)}")
|
||||
return platform_message.MessageChain([platform_message.Unknown("[图片处理失败]")])
|
||||
self.logger.error(f'处理图片失败: {str(e)}')
|
||||
return platform_message.MessageChain([platform_message.Unknown('[图片处理失败]')])
|
||||
|
||||
async def _handler_voice(
|
||||
self,
|
||||
message: Optional[dict],
|
||||
content_no_preifx: str
|
||||
) -> platform_message.MessageChain:
|
||||
async def _handler_voice(self, message: Optional[dict], content_no_preifx: str) -> platform_message.MessageChain:
|
||||
"""处理语音消息 (msg_type=34)"""
|
||||
message_List = []
|
||||
try:
|
||||
@@ -206,39 +181,33 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
bufid = voicemsg.get('bufid')
|
||||
length = voicemsg.get('voicelength')
|
||||
voice_data = self.bot.get_msg_voice(buf_id=str(bufid), length=int(length), msgid=str(new_msg_id))
|
||||
audio_base64 = voice_data["Data"]['Base64']
|
||||
audio_base64 = voice_data['Data']['Base64']
|
||||
|
||||
# 验证语音数据有效性
|
||||
if not audio_base64:
|
||||
message_List.append(platform_message.Unknown(text="[语音内容为空]"))
|
||||
message_List.append(platform_message.Unknown(text='[语音内容为空]'))
|
||||
return platform_message.MessageChain(message_List)
|
||||
|
||||
# 转换为平台支持的语音格式(如 Silk 格式)
|
||||
voice_element = platform_message.Voice(
|
||||
base64=f"data:audio/silk;base64,{audio_base64}"
|
||||
)
|
||||
voice_element = platform_message.Voice(base64=f'data:audio/silk;base64,{audio_base64}')
|
||||
message_List.append(voice_element)
|
||||
|
||||
except KeyError as e:
|
||||
self.logger.error(f"语音数据字段缺失: {str(e)}")
|
||||
message_List.append(platform_message.Unknown(text="[语音数据解析失败]"))
|
||||
self.logger.error(f'语音数据字段缺失: {str(e)}')
|
||||
message_List.append(platform_message.Unknown(text='[语音数据解析失败]'))
|
||||
except Exception as e:
|
||||
self.logger.error(f"处理语音消息异常: {str(e)}")
|
||||
message_List.append(platform_message.Unknown(text="[语音处理失败]"))
|
||||
self.logger.error(f'处理语音消息异常: {str(e)}')
|
||||
message_List.append(platform_message.Unknown(text='[语音处理失败]'))
|
||||
|
||||
return platform_message.MessageChain(message_List)
|
||||
|
||||
async def _handler_compound(
|
||||
self,
|
||||
message: Optional[dict],
|
||||
content_no_preifx: str
|
||||
) -> platform_message.MessageChain:
|
||||
async def _handler_compound(self, message: Optional[dict], content_no_preifx: str) -> platform_message.MessageChain:
|
||||
"""处理复合消息 (msg_type=49),根据子类型分派"""
|
||||
try:
|
||||
xml_data = ET.fromstring(content_no_preifx)
|
||||
appmsg_data = xml_data.find('.//appmsg')
|
||||
if appmsg_data:
|
||||
data_type = appmsg_data.findtext('.//type', "")
|
||||
data_type = appmsg_data.findtext('.//type', '')
|
||||
# 二次分派处理器
|
||||
sub_handler_map = {
|
||||
'57': self._handler_compound_quote,
|
||||
@@ -247,9 +216,9 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
'74': self._handler_compound_file,
|
||||
'33': self._handler_compound_mini_program,
|
||||
'36': self._handler_compound_mini_program,
|
||||
'2000': partial(self._handler_compound_unsupported, text="[转账消息]"),
|
||||
'2001': partial(self._handler_compound_unsupported, text="[红包消息]"),
|
||||
'51': partial(self._handler_compound_unsupported, text="[视频号消息]"),
|
||||
'2000': partial(self._handler_compound_unsupported, text='[转账消息]'),
|
||||
'2001': partial(self._handler_compound_unsupported, text='[红包消息]'),
|
||||
'51': partial(self._handler_compound_unsupported, text='[视频号消息]'),
|
||||
}
|
||||
|
||||
handler = sub_handler_map.get(data_type, self._handler_compound_unsupported)
|
||||
@@ -260,56 +229,51 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
else:
|
||||
return platform_message.MessageChain([platform_message.Unknown(text=content_no_preifx)])
|
||||
except Exception as e:
|
||||
self.logger.error(f"解析复合消息失败: {str(e)}")
|
||||
self.logger.error(f'解析复合消息失败: {str(e)}')
|
||||
return platform_message.MessageChain([platform_message.Unknown(text=content_no_preifx)])
|
||||
|
||||
async def _handler_compound_quote(
|
||||
self,
|
||||
message: Optional[dict],
|
||||
xml_data: ET.Element
|
||||
self, message: Optional[dict], xml_data: ET.Element
|
||||
) -> platform_message.MessageChain:
|
||||
"""处理引用消息 (data_type=57)"""
|
||||
message_list = []
|
||||
# self.logger.info("_handler_compound_quote", ET.tostring(xml_data, encoding='unicode'))
|
||||
# self.logger.info("_handler_compound_quote", ET.tostring(xml_data, encoding='unicode'))
|
||||
appmsg_data = xml_data.find('.//appmsg')
|
||||
quote_data = "" # 引用原文
|
||||
quote_id = None # 引用消息的原发送者
|
||||
tousername = None # 接收方: 所属微信的wxid
|
||||
user_data = "" # 用户消息
|
||||
quote_data = '' # 引用原文
|
||||
# quote_id = None # 引用消息的原发送者
|
||||
# tousername = None # 接收方: 所属微信的wxid
|
||||
user_data = '' # 用户消息
|
||||
sender_id = xml_data.findtext('.//fromusername') # 发送方:单聊用户/群member
|
||||
|
||||
# 引用消息转发
|
||||
if appmsg_data:
|
||||
user_data = appmsg_data.findtext('.//title') or ""
|
||||
user_data = appmsg_data.findtext('.//title') or ''
|
||||
quote_data = appmsg_data.find('.//refermsg').findtext('.//content')
|
||||
quote_id = appmsg_data.find('.//refermsg').findtext('.//chatusr')
|
||||
message_list.append(
|
||||
platform_message.WeChatAppMsg(
|
||||
app_msg=ET.tostring(appmsg_data, encoding='unicode'))
|
||||
)
|
||||
if message:
|
||||
tousername = message['to_user_name']["str"]
|
||||
|
||||
# quote_id = appmsg_data.find('.//refermsg').findtext('.//chatusr')
|
||||
message_list.append(platform_message.WeChatAppMsg(app_msg=ET.tostring(appmsg_data, encoding='unicode')))
|
||||
# if message:
|
||||
# tousername = message['to_user_name']['str']
|
||||
|
||||
if quote_data:
|
||||
quote_data_message_list = platform_message.MessageChain()
|
||||
# 文本消息
|
||||
try:
|
||||
if "<msg>" not in quote_data:
|
||||
if '<msg>' not in quote_data:
|
||||
quote_data_message_list.append(platform_message.Plain(quote_data))
|
||||
else:
|
||||
# 引用消息展开
|
||||
quote_data_xml = ET.fromstring(quote_data)
|
||||
if quote_data_xml.find("img"):
|
||||
if quote_data_xml.find('img'):
|
||||
quote_data_message_list.extend(await self._handler_image(None, quote_data))
|
||||
elif quote_data_xml.find("voicemsg"):
|
||||
elif quote_data_xml.find('voicemsg'):
|
||||
quote_data_message_list.extend(await self._handler_voice(None, quote_data))
|
||||
elif quote_data_xml.find("videomsg"):
|
||||
elif quote_data_xml.find('videomsg'):
|
||||
quote_data_message_list.extend(await self._handler_default(None, quote_data)) # 先不处理
|
||||
else:
|
||||
# appmsg
|
||||
quote_data_message_list.extend(await self._handler_compound(None, quote_data))
|
||||
except Exception as e:
|
||||
self.logger.error(f"处理引用消息异常 expcetion:{e}")
|
||||
self.logger.error(f'处理引用消息异常 expcetion:{e}')
|
||||
quote_data_message_list.append(platform_message.Plain(quote_data))
|
||||
message_list.append(
|
||||
platform_message.Quote(
|
||||
@@ -324,15 +288,11 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
|
||||
return platform_message.MessageChain(message_list)
|
||||
|
||||
async def _handler_compound_file(
|
||||
self,
|
||||
message: dict,
|
||||
xml_data: ET.Element
|
||||
) -> platform_message.MessageChain:
|
||||
async def _handler_compound_file(self, message: dict, xml_data: ET.Element) -> platform_message.MessageChain:
|
||||
"""处理文件消息 (data_type=6)"""
|
||||
file_data = xml_data.find('.//appmsg')
|
||||
|
||||
if file_data.findtext('.//type', "") == "74":
|
||||
if file_data.findtext('.//type', '') == '74':
|
||||
return None
|
||||
|
||||
else:
|
||||
@@ -355,22 +315,21 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
|
||||
file_data = self.bot.cdn_download(aeskey=aeskey, file_type=5, file_url=cdnthumburl)
|
||||
|
||||
file_base64 = file_data["Data"]['FileData']
|
||||
file_base64 = file_data['Data']['FileData']
|
||||
# print(file_data)
|
||||
file_size = file_data["Data"]['TotalSize']
|
||||
file_size = file_data['Data']['TotalSize']
|
||||
|
||||
# print(file_base64)
|
||||
return platform_message.MessageChain([
|
||||
platform_message.WeChatFile(file_id=file_id, file_name=file_name, file_size=file_size,
|
||||
file_base64=file_base64),
|
||||
platform_message.WeChatForwardFile(xml_data=xml_data_str)
|
||||
])
|
||||
return platform_message.MessageChain(
|
||||
[
|
||||
platform_message.WeChatFile(
|
||||
file_id=file_id, file_name=file_name, file_size=file_size, file_base64=file_base64
|
||||
),
|
||||
platform_message.WeChatForwardFile(xml_data=xml_data_str),
|
||||
]
|
||||
)
|
||||
|
||||
async def _handler_compound_link(
|
||||
self,
|
||||
message: dict,
|
||||
xml_data: ET.Element
|
||||
) -> platform_message.MessageChain:
|
||||
async def _handler_compound_link(self, message: dict, xml_data: ET.Element) -> platform_message.MessageChain:
|
||||
"""处理链接消息(如公众号文章、外部网页)"""
|
||||
message_list = []
|
||||
try:
|
||||
@@ -383,56 +342,38 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
link_title=appmsg.findtext('title', ''),
|
||||
link_desc=appmsg.findtext('des', ''),
|
||||
link_url=appmsg.findtext('url', ''),
|
||||
link_thumb_url=appmsg.findtext("thumburl", '') # 这个字段拿不到
|
||||
link_thumb_url=appmsg.findtext('thumburl', ''), # 这个字段拿不到
|
||||
)
|
||||
)
|
||||
# 还没有发链接的接口, 暂时还需要自己构造appmsg, 先用WeChatAppMsg。
|
||||
message_list.append(
|
||||
platform_message.WeChatAppMsg(
|
||||
app_msg=ET.tostring(appmsg, encoding='unicode')
|
||||
)
|
||||
)
|
||||
message_list.append(platform_message.WeChatAppMsg(app_msg=ET.tostring(appmsg, encoding='unicode')))
|
||||
except Exception as e:
|
||||
self.logger.error(f"解析链接消息失败: {str(e)}")
|
||||
self.logger.error(f'解析链接消息失败: {str(e)}')
|
||||
return platform_message.MessageChain(message_list)
|
||||
|
||||
async def _handler_compound_mini_program(
|
||||
self,
|
||||
message: dict,
|
||||
xml_data: ET.Element
|
||||
self, message: dict, xml_data: ET.Element
|
||||
) -> platform_message.MessageChain:
|
||||
"""处理小程序消息(如小程序卡片、服务通知)"""
|
||||
xml_data_str = ET.tostring(xml_data, encoding='unicode')
|
||||
return platform_message.MessageChain([
|
||||
platform_message.WeChatForwardMiniPrograms(xml_data=xml_data_str)
|
||||
])
|
||||
return platform_message.MessageChain([platform_message.WeChatForwardMiniPrograms(xml_data=xml_data_str)])
|
||||
|
||||
async def _handler_default(
|
||||
self,
|
||||
message: Optional[dict],
|
||||
content_no_preifx: str
|
||||
) -> platform_message.MessageChain:
|
||||
async def _handler_default(self, message: Optional[dict], content_no_preifx: str) -> platform_message.MessageChain:
|
||||
"""处理未知消息类型"""
|
||||
if message:
|
||||
msg_type = message["msg_type"]
|
||||
msg_type = message['msg_type']
|
||||
else:
|
||||
msg_type = ""
|
||||
return platform_message.MessageChain([
|
||||
platform_message.Unknown(text=f"[未知消息类型 msg_type:{msg_type}]")
|
||||
])
|
||||
msg_type = ''
|
||||
return platform_message.MessageChain([platform_message.Unknown(text=f'[未知消息类型 msg_type:{msg_type}]')])
|
||||
|
||||
def _handler_compound_unsupported(
|
||||
self,
|
||||
message: dict,
|
||||
xml_data: str,
|
||||
text: Optional[str] = None
|
||||
self, message: dict, xml_data: str, text: Optional[str] = None
|
||||
) -> platform_message.MessageChain:
|
||||
"""处理未支持复合消息类型(msg_type=49)子类型"""
|
||||
if not text:
|
||||
text = f"[xml_data={xml_data}]"
|
||||
text = f'[xml_data={xml_data}]'
|
||||
content_list = []
|
||||
content_list.append(
|
||||
platform_message.Unknown(text=f"[处理未支持复合消息类型[msg_type=49]|{text}"))
|
||||
content_list.append(platform_message.Unknown(text=f'[处理未支持复合消息类型[msg_type=49]|{text}'))
|
||||
|
||||
return platform_message.MessageChain(content_list)
|
||||
|
||||
@@ -441,7 +382,7 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
ats_bot = False
|
||||
try:
|
||||
to_user_name = message['to_user_name']['str'] # 接收方: 所属微信的wxid
|
||||
raw_content = message["content"]["str"] # 原始消息内容
|
||||
raw_content = message['content']['str'] # 原始消息内容
|
||||
content_no_prefix, _ = self._extract_content_and_sender(raw_content)
|
||||
# 直接艾特机器人(这个有bug,当被引用的消息里面有@bot,会套娃
|
||||
# ats_bot = ats_bot or (f"@{bot_account_id}" in content_no_prefix)
|
||||
@@ -452,7 +393,7 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
msg_source = message.get('msg_source', '') or ''
|
||||
if len(msg_source) > 0:
|
||||
msg_source_data = ET.fromstring(msg_source)
|
||||
at_user_list = msg_source_data.findtext("atuserlist") or ""
|
||||
at_user_list = msg_source_data.findtext('atuserlist') or ''
|
||||
ats_bot = ats_bot or (to_user_name in at_user_list)
|
||||
# 引用bot
|
||||
if message.get('msg_type', 0) == 49:
|
||||
@@ -463,7 +404,7 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
quote_id = appmsg_data.find('.//refermsg').findtext('.//chatusr') # 引用消息的原发送者
|
||||
ats_bot = ats_bot or (quote_id == tousername)
|
||||
except Exception as e:
|
||||
self.logger.error(f"_ats_bot got except: {e}")
|
||||
self.logger.error(f'_ats_bot got except: {e}')
|
||||
finally:
|
||||
return ats_bot
|
||||
|
||||
@@ -476,60 +417,58 @@ class WeChatPadMessageConverter(adapter.MessageConverter):
|
||||
msg_source = message.get('msg_source', '') or ''
|
||||
if len(msg_source) > 0:
|
||||
msg_source_data = ET.fromstring(msg_source)
|
||||
at_user_list = msg_source_data.findtext("atuserlist") or ""
|
||||
at_user_list = msg_source_data.findtext('atuserlist') or ''
|
||||
if at_user_list:
|
||||
# atuserlist格式通常是逗号分隔的用户ID列表
|
||||
at_targets = [user_id.strip() for user_id in at_user_list.split(',') if user_id.strip()]
|
||||
except Exception as e:
|
||||
self.logger.error(f"_extract_at_targets got except: {e}")
|
||||
self.logger.error(f'_extract_at_targets got except: {e}')
|
||||
return at_targets
|
||||
|
||||
|
||||
# 提取一下content前面的sender_id, 和去掉前缀的内容
|
||||
def _extract_content_and_sender(self, raw_content: str) -> Tuple[str, Optional[str]]:
|
||||
try:
|
||||
# 检查消息开头,如果有 wxid_sbitaz0mt65n22:\n 则删掉
|
||||
# add: 有些用户的wxid不是上述格式。换成user_name:
|
||||
regex = re.compile(r"^[a-zA-Z0-9_\-]{5,20}:")
|
||||
line_split = raw_content.split("\n")
|
||||
regex = re.compile(r'^[a-zA-Z0-9_\-]{5,20}:')
|
||||
line_split = raw_content.split('\n')
|
||||
if len(line_split) > 0 and regex.match(line_split[0]):
|
||||
raw_content = "\n".join(line_split[1:])
|
||||
sender_id = line_split[0].strip(":")
|
||||
raw_content = '\n'.join(line_split[1:])
|
||||
sender_id = line_split[0].strip(':')
|
||||
return raw_content, sender_id
|
||||
except Exception as e:
|
||||
self.logger.error(f"_extract_content_and_sender got except: {e}")
|
||||
self.logger.error(f'_extract_content_and_sender got except: {e}')
|
||||
finally:
|
||||
return raw_content, None
|
||||
|
||||
# 是否是群消息
|
||||
def _is_group_message(self, message: dict) -> bool:
|
||||
from_user_name = message['from_user_name']['str']
|
||||
return from_user_name.endswith("@chatroom")
|
||||
return from_user_name.endswith('@chatroom')
|
||||
|
||||
|
||||
class WeChatPadEventConverter(adapter.EventConverter):
|
||||
|
||||
def __init__(self, config: dict, logger: logging.Logger):
|
||||
self.config = config
|
||||
self.message_converter = WeChatPadMessageConverter(config, logger)
|
||||
self.logger = logger
|
||||
|
||||
|
||||
@staticmethod
|
||||
async def yiri2target(
|
||||
event: platform_events.MessageEvent
|
||||
) -> dict:
|
||||
async def yiri2target(event: platform_events.MessageEvent) -> dict:
|
||||
pass
|
||||
|
||||
async def target2yiri(
|
||||
self,
|
||||
event: dict,
|
||||
bot_account_id: str,
|
||||
self,
|
||||
event: dict,
|
||||
bot_account_id: str,
|
||||
) -> platform_events.MessageEvent:
|
||||
|
||||
# 排除公众号以及微信团队消息
|
||||
if event['from_user_name']['str'].startswith('gh_') \
|
||||
or event['from_user_name']['str']=='weixin'\
|
||||
or event['from_user_name']['str'] == "newsapp"\
|
||||
or event['from_user_name']['str'] == self.config["wxid"]:
|
||||
if (
|
||||
event['from_user_name']['str'].startswith('gh_')
|
||||
or event['from_user_name']['str'] == 'weixin'
|
||||
or event['from_user_name']['str'] == 'newsapp'
|
||||
or event['from_user_name']['str'] == self.config['wxid']
|
||||
):
|
||||
return None
|
||||
message_chain = await self.message_converter.target2yiri(copy.deepcopy(event), bot_account_id)
|
||||
|
||||
@@ -538,7 +477,7 @@ class WeChatPadEventConverter(adapter.EventConverter):
|
||||
|
||||
if '@chatroom' in event['from_user_name']['str']:
|
||||
# 找出开头的 wxid_ 字符串,以:结尾
|
||||
sender_wxid = event['content']['str'].split(":")[0]
|
||||
sender_wxid = event['content']['str'].split(':')[0]
|
||||
|
||||
return platform_events.GroupMessage(
|
||||
sender=platform_entities.GroupMember(
|
||||
@@ -550,13 +489,13 @@ class WeChatPadEventConverter(adapter.EventConverter):
|
||||
name=event['from_user_name']['str'],
|
||||
permission=platform_entities.Permission.Member,
|
||||
),
|
||||
special_title="",
|
||||
special_title='',
|
||||
join_timestamp=0,
|
||||
last_speak_timestamp=0,
|
||||
mute_time_remaining=0,
|
||||
),
|
||||
message_chain=message_chain,
|
||||
time=event["create_time"],
|
||||
time=event['create_time'],
|
||||
source_platform_object=event,
|
||||
)
|
||||
else:
|
||||
@@ -567,13 +506,13 @@ class WeChatPadEventConverter(adapter.EventConverter):
|
||||
remark='',
|
||||
),
|
||||
message_chain=message_chain,
|
||||
time=event["create_time"],
|
||||
time=event['create_time'],
|
||||
source_platform_object=event,
|
||||
)
|
||||
|
||||
|
||||
class WeChatPadAdapter(adapter.MessagePlatformAdapter):
|
||||
name: str = "WeChatPad" # 定义适配器名称
|
||||
name: str = 'WeChatPad' # 定义适配器名称
|
||||
|
||||
bot: WeChatPadClient
|
||||
quart_app: quart.Quart
|
||||
@@ -606,27 +545,21 @@ class WeChatPadAdapter(adapter.MessagePlatformAdapter):
|
||||
# self.ap.logger.debug(f"Gewechat callback event: {data}")
|
||||
# print(data)
|
||||
|
||||
|
||||
try:
|
||||
event = await self.event_converter.target2yiri(data.copy(), self.bot_account_id)
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in wechatpad callback: {traceback.format_exc()}")
|
||||
except Exception:
|
||||
await self.logger.error(f'Error in wechatpad callback: {traceback.format_exc()}')
|
||||
|
||||
if event.__class__ in self.listeners:
|
||||
await self.listeners[event.__class__](event, self)
|
||||
|
||||
return 'ok'
|
||||
|
||||
|
||||
async def _handle_message(
|
||||
self,
|
||||
message: platform_message.MessageChain,
|
||||
target_id: str
|
||||
):
|
||||
async def _handle_message(self, message: platform_message.MessageChain, target_id: str):
|
||||
"""统一消息处理核心逻辑"""
|
||||
content_list = await self.message_converter.yiri2target(message)
|
||||
# print(content_list)
|
||||
at_targets = [item["target"] for item in content_list if item["type"] == "at"]
|
||||
at_targets = [item['target'] for item in content_list if item['type'] == 'at']
|
||||
# print(at_targets)
|
||||
# 处理@逻辑
|
||||
at_targets = at_targets or []
|
||||
@@ -634,71 +567,62 @@ class WeChatPadAdapter(adapter.MessagePlatformAdapter):
|
||||
if at_targets:
|
||||
member_info = self.bot.get_chatroom_member_detail(
|
||||
target_id,
|
||||
)["Data"]["member_data"]["chatroom_member_list"]
|
||||
)['Data']['member_data']['chatroom_member_list']
|
||||
|
||||
# 处理消息组件
|
||||
for msg in content_list:
|
||||
# 文本消息处理@
|
||||
if msg['type'] == 'text' and at_targets:
|
||||
at_nick_name_list = []
|
||||
for member in member_info:
|
||||
if member["user_name"] in at_targets:
|
||||
at_nick_name_list.append(f'@{member["nick_name"]}')
|
||||
msg['content'] = f'{" ".join(at_nick_name_list)} {msg["content"]}'
|
||||
if 'all' in at_targets:
|
||||
msg['content'] = f'@所有人 {msg["content"]}'
|
||||
else:
|
||||
at_nick_name_list = []
|
||||
for member in member_info:
|
||||
if member['user_name'] in at_targets:
|
||||
at_nick_name_list.append(f'@{member["nick_name"]}')
|
||||
msg['content'] = f'{" ".join(at_nick_name_list)} {msg["content"]}'
|
||||
|
||||
# 统一消息派发
|
||||
handler_map = {
|
||||
'text': lambda msg: self.bot.send_text_message(
|
||||
to_wxid=target_id,
|
||||
message=msg['content'],
|
||||
ats=at_targets
|
||||
to_wxid=target_id, message=msg['content'], ats=['notify@all'] if 'all' in at_targets else at_targets
|
||||
),
|
||||
'image': lambda msg: self.bot.send_image_message(
|
||||
to_wxid=target_id,
|
||||
img_url=msg["image"],
|
||||
ats = at_targets
|
||||
to_wxid=target_id, img_url=msg['image'], ats=['notify@all'] if 'all' in at_targets else at_targets
|
||||
),
|
||||
'WeChatEmoji': lambda msg: self.bot.send_emoji_message(
|
||||
to_wxid=target_id,
|
||||
emoji_md5=msg['emoji_md5'],
|
||||
emoji_size=msg['emoji_size']
|
||||
to_wxid=target_id, emoji_md5=msg['emoji_md5'], emoji_size=msg['emoji_size']
|
||||
),
|
||||
|
||||
'voice': lambda msg: self.bot.send_voice_message(
|
||||
to_wxid=target_id,
|
||||
voice_data=msg['data'],
|
||||
voice_duration=msg["duration"],
|
||||
voice_forma=msg["forma"],
|
||||
voice_duration=msg['duration'],
|
||||
voice_forma=msg['forma'],
|
||||
),
|
||||
'WeChatAppMsg': lambda msg: self.bot.send_app_message(
|
||||
to_wxid=target_id,
|
||||
app_message=msg['app_msg'],
|
||||
type=0,
|
||||
),
|
||||
'at': lambda msg: None
|
||||
'at': lambda msg: None,
|
||||
}
|
||||
|
||||
if handler := handler_map.get(msg['type']):
|
||||
handler(msg)
|
||||
# self.ap.logger.warning(f"未处理的消息类型: {ret}")
|
||||
else:
|
||||
self.ap.logger.warning(f"未处理的消息类型: {msg['type']}")
|
||||
self.ap.logger.warning(f'未处理的消息类型: {msg["type"]}')
|
||||
continue
|
||||
|
||||
async def send_message(
|
||||
self,
|
||||
target_type: str,
|
||||
target_id: str,
|
||||
message: platform_message.MessageChain
|
||||
):
|
||||
async def send_message(self, target_type: str, target_id: str, message: platform_message.MessageChain):
|
||||
"""主动发送消息"""
|
||||
return await self._handle_message(message, target_id)
|
||||
|
||||
async def reply_message(
|
||||
self,
|
||||
message_source: platform_events.MessageEvent,
|
||||
message: platform_message.MessageChain,
|
||||
quote_origin: bool = False
|
||||
self,
|
||||
message_source: platform_events.MessageEvent,
|
||||
message: platform_message.MessageChain,
|
||||
quote_origin: bool = False,
|
||||
):
|
||||
"""回复消息"""
|
||||
if message_source.source_platform_object:
|
||||
@@ -709,58 +633,49 @@ class WeChatPadAdapter(adapter.MessagePlatformAdapter):
|
||||
pass
|
||||
|
||||
def register_listener(
|
||||
self,
|
||||
event_type: typing.Type[platform_events.Event],
|
||||
callback: typing.Callable[[platform_events.Event, adapter.MessagePlatformAdapter], None]
|
||||
self,
|
||||
event_type: typing.Type[platform_events.Event],
|
||||
callback: typing.Callable[[platform_events.Event, adapter.MessagePlatformAdapter], None],
|
||||
):
|
||||
self.listeners[event_type] = callback
|
||||
|
||||
def unregister_listener(
|
||||
self,
|
||||
event_type: typing.Type[platform_events.Event],
|
||||
callback: typing.Callable[[platform_events.Event, adapter.MessagePlatformAdapter], None]
|
||||
self,
|
||||
event_type: typing.Type[platform_events.Event],
|
||||
callback: typing.Callable[[platform_events.Event, adapter.MessagePlatformAdapter], None],
|
||||
):
|
||||
pass
|
||||
|
||||
async def run_async(self):
|
||||
|
||||
if not self.config["admin_key"] and not self.config["token"]:
|
||||
raise RuntimeError("无wechatpad管理密匙,请填入配置文件后重启")
|
||||
if not self.config['admin_key'] and not self.config['token']:
|
||||
raise RuntimeError('无wechatpad管理密匙,请填入配置文件后重启')
|
||||
else:
|
||||
if self.config["token"]:
|
||||
self.bot = WeChatPadClient(
|
||||
self.config['wechatpad_url'],
|
||||
self.config["token"]
|
||||
)
|
||||
if self.config['token']:
|
||||
self.bot = WeChatPadClient(self.config['wechatpad_url'], self.config['token'])
|
||||
data = self.bot.get_login_status()
|
||||
self.ap.logger.info(data)
|
||||
if data["Code"] == 300 and data["Text"] == "你已退出微信":
|
||||
if data['Code'] == 300 and data['Text'] == '你已退出微信':
|
||||
response = requests.post(
|
||||
f"{self.config['wechatpad_url']}/admin/GenAuthKey1?key={self.config['admin_key']}",
|
||||
json={"Count": 1, "Days": 365}
|
||||
f'{self.config["wechatpad_url"]}/admin/GenAuthKey1?key={self.config["admin_key"]}',
|
||||
json={'Count': 1, 'Days': 365},
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise Exception(f"获取token失败: {response.text}")
|
||||
self.config["token"] = response.json()["Data"][0]
|
||||
raise Exception(f'获取token失败: {response.text}')
|
||||
self.config['token'] = response.json()['Data'][0]
|
||||
|
||||
elif not self.config["token"]:
|
||||
elif not self.config['token']:
|
||||
response = requests.post(
|
||||
f"{self.config['wechatpad_url']}/admin/GenAuthKey1?key={self.config['admin_key']}",
|
||||
json={"Count": 1, "Days": 365}
|
||||
f'{self.config["wechatpad_url"]}/admin/GenAuthKey1?key={self.config["admin_key"]}',
|
||||
json={'Count': 1, 'Days': 365},
|
||||
)
|
||||
if response.status_code != 200:
|
||||
raise Exception(f"获取token失败: {response.text}")
|
||||
self.config["token"] = response.json()["Data"][0]
|
||||
raise Exception(f'获取token失败: {response.text}')
|
||||
self.config['token'] = response.json()['Data'][0]
|
||||
|
||||
self.bot = WeChatPadClient(
|
||||
self.config['wechatpad_url'],
|
||||
self.config["token"],
|
||||
logger=self.logger
|
||||
)
|
||||
self.ap.logger.info(self.config["token"])
|
||||
self.bot = WeChatPadClient(self.config['wechatpad_url'], self.config['token'], logger=self.logger)
|
||||
self.ap.logger.info(self.config['token'])
|
||||
thread_1 = threading.Event()
|
||||
|
||||
|
||||
def wechat_login_process():
|
||||
# 不登录,这些先注释掉,避免登陆态尝试拉qrcode。
|
||||
# login_data =self.bot.get_login_qr()
|
||||
@@ -768,67 +683,54 @@ class WeChatPadAdapter(adapter.MessagePlatformAdapter):
|
||||
# url = login_data['Data']["QrCodeUrl"]
|
||||
# self.ap.logger.info(login_data)
|
||||
|
||||
|
||||
profile =self.bot.get_profile()
|
||||
profile = self.bot.get_profile()
|
||||
self.ap.logger.info(profile)
|
||||
|
||||
self.bot_account_id = profile["Data"]["userInfo"]["nickName"]["str"]
|
||||
self.config["wxid"] = profile["Data"]["userInfo"]["userName"]["str"]
|
||||
self.bot_account_id = profile['Data']['userInfo']['nickName']['str']
|
||||
self.config['wxid'] = profile['Data']['userInfo']['userName']['str']
|
||||
thread_1.set()
|
||||
|
||||
|
||||
# asyncio.create_task(wechat_login_process)
|
||||
threading.Thread(target=wechat_login_process).start()
|
||||
|
||||
def connect_websocket_sync() -> None:
|
||||
|
||||
thread_1.wait()
|
||||
uri = f"{self.config['wechatpad_ws']}/GetSyncMsg?key={self.config['token']}"
|
||||
self.ap.logger.info(f"Connecting to WebSocket: {uri}")
|
||||
uri = f'{self.config["wechatpad_ws"]}/GetSyncMsg?key={self.config["token"]}'
|
||||
self.ap.logger.info(f'Connecting to WebSocket: {uri}')
|
||||
|
||||
def on_message(ws, message):
|
||||
try:
|
||||
data = json.loads(message)
|
||||
self.ap.logger.debug(f"Received message: {data}")
|
||||
self.ap.logger.debug(f'Received message: {data}')
|
||||
# 这里需要确保ws_message是同步的,或者使用asyncio.run调用异步方法
|
||||
asyncio.run(self.ws_message(data))
|
||||
except json.JSONDecodeError:
|
||||
self.ap.logger.error(f"Non-JSON message: {message[:100]}...")
|
||||
self.ap.logger.error(f'Non-JSON message: {message[:100]}...')
|
||||
|
||||
def on_error(ws, error):
|
||||
self.ap.logger.error(f"WebSocket error: {str(error)[:200]}")
|
||||
self.ap.logger.error(f'WebSocket error: {str(error)[:200]}')
|
||||
|
||||
def on_close(ws, close_status_code, close_msg):
|
||||
self.ap.logger.info("WebSocket closed, reconnecting...")
|
||||
self.ap.logger.info('WebSocket closed, reconnecting...')
|
||||
time.sleep(5)
|
||||
connect_websocket_sync() # 自动重连
|
||||
|
||||
def on_open(ws):
|
||||
self.ap.logger.info("WebSocket connected successfully!")
|
||||
self.ap.logger.info('WebSocket connected successfully!')
|
||||
|
||||
ws = websocket.WebSocketApp(
|
||||
uri,
|
||||
on_message=on_message,
|
||||
on_error=on_error,
|
||||
on_close=on_close,
|
||||
on_open=on_open
|
||||
)
|
||||
ws.run_forever(
|
||||
ping_interval=60,
|
||||
ping_timeout=20
|
||||
uri, on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open
|
||||
)
|
||||
ws.run_forever(ping_interval=60, ping_timeout=20)
|
||||
|
||||
# 直接调用同步版本(会阻塞)
|
||||
# connect_websocket_sync()
|
||||
|
||||
# 这行代码会在WebSocket连接断开后才会执行
|
||||
# self.ap.logger.info("WebSocket client thread started")
|
||||
thread = threading.Thread(
|
||||
target=connect_websocket_sync,
|
||||
name="WebSocketClientThread",
|
||||
daemon=True
|
||||
)
|
||||
thread = threading.Thread(target=connect_websocket_sync, name='WebSocketClientThread', daemon=True)
|
||||
thread.start()
|
||||
self.ap.logger.info("WebSocket client thread started")
|
||||
self.ap.logger.info('WebSocket client thread started')
|
||||
|
||||
async def kill(self) -> bool:
|
||||
pass
|
||||
|
||||
@@ -157,7 +157,7 @@ class WecomAdapter(adapter.MessagePlatformAdapter):
|
||||
token=config['token'],
|
||||
EncodingAESKey=config['EncodingAESKey'],
|
||||
contacts_secret=config['contacts_secret'],
|
||||
logger=self.logger
|
||||
logger=self.logger,
|
||||
)
|
||||
|
||||
async def reply_message(
|
||||
@@ -201,8 +201,8 @@ class WecomAdapter(adapter.MessagePlatformAdapter):
|
||||
self.bot_account_id = event.receiver_id
|
||||
try:
|
||||
return await callback(await self.event_converter.target2yiri(event), self)
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in wecom callback: {traceback.format_exc()}")
|
||||
except Exception:
|
||||
await self.logger.error(f'Error in wecom callback: {traceback.format_exc()}')
|
||||
|
||||
if event_type == platform_events.FriendMessage:
|
||||
self.bot.on_message('text')(on_message)
|
||||
|
||||
@@ -145,7 +145,7 @@ class WecomCSAdapter(adapter.MessagePlatformAdapter):
|
||||
secret=config['secret'],
|
||||
token=config['token'],
|
||||
EncodingAESKey=config['EncodingAESKey'],
|
||||
logger=self.logger
|
||||
logger=self.logger,
|
||||
)
|
||||
|
||||
async def reply_message(
|
||||
@@ -178,8 +178,8 @@ class WecomCSAdapter(adapter.MessagePlatformAdapter):
|
||||
self.bot_account_id = event.receiver_id
|
||||
try:
|
||||
return await callback(await self.event_converter.target2yiri(event), self)
|
||||
except Exception as e:
|
||||
await self.logger.error(f"Error in wecomcs callback: {traceback.format_exc()}")
|
||||
except Exception:
|
||||
await self.logger.error(f'Error in wecomcs callback: {traceback.format_exc()}')
|
||||
|
||||
if event_type == platform_events.FriendMessage:
|
||||
self.bot.on_message('text')(on_message)
|
||||
|
||||
@@ -812,12 +812,14 @@ class File(MessageComponent):
|
||||
def __str__(self):
|
||||
return f'[文件]{self.name}'
|
||||
|
||||
|
||||
class Face(MessageComponent):
|
||||
"""系统表情
|
||||
此处将超级表情骰子/划拳,一同归类于face
|
||||
当face_type为rps(划拳)时 face_id 对应的是手势
|
||||
当face_type为dice(骰子)时 face_id 对应的是点数
|
||||
"""
|
||||
|
||||
type: str = 'Face'
|
||||
"""表情类型"""
|
||||
face_type: str = 'face'
|
||||
@@ -834,15 +836,15 @@ class Face(MessageComponent):
|
||||
elif self.face_type == 'rps':
|
||||
return f'[表情]{self.face_name}({self.rps_data(self.face_id)})'
|
||||
|
||||
|
||||
def rps_data(self,face_id):
|
||||
rps_dict ={
|
||||
1 : "布",
|
||||
2 : "剪刀",
|
||||
3 : "石头",
|
||||
def rps_data(self, face_id):
|
||||
rps_dict = {
|
||||
1: '布',
|
||||
2: '剪刀',
|
||||
3: '石头',
|
||||
}
|
||||
return rps_dict[face_id]
|
||||
|
||||
|
||||
# ================ 个人微信专用组件 ================
|
||||
|
||||
|
||||
@@ -971,5 +973,6 @@ class WeChatFile(MessageComponent):
|
||||
"""文件地址"""
|
||||
file_base64: str = ''
|
||||
"""base64"""
|
||||
|
||||
def __str__(self):
|
||||
return f'[文件]{self.file_name}'
|
||||
return f'[文件]{self.file_name}'
|
||||
|
||||
@@ -125,6 +125,95 @@ class Message(pydantic.BaseModel):
|
||||
return platform_message.MessageChain(mc)
|
||||
|
||||
|
||||
class MessageChunk(pydantic.BaseModel):
|
||||
"""消息"""
|
||||
|
||||
resp_message_id: typing.Optional[str] = None
|
||||
"""消息id"""
|
||||
|
||||
role: str # user, system, assistant, tool, command, plugin
|
||||
"""消息的角色"""
|
||||
|
||||
name: typing.Optional[str] = None
|
||||
"""名称,仅函数调用返回时设置"""
|
||||
|
||||
all_content: typing.Optional[str] = None
|
||||
"""所有内容"""
|
||||
|
||||
content: typing.Optional[list[ContentElement]] | typing.Optional[str] = None
|
||||
"""内容"""
|
||||
|
||||
tool_calls: typing.Optional[list[ToolCall]] = None
|
||||
"""工具调用"""
|
||||
|
||||
tool_call_id: typing.Optional[str] = None
|
||||
|
||||
is_final: bool = False
|
||||
"""是否是结束"""
|
||||
|
||||
msg_sequence: int = 0
|
||||
"""消息迭代次数"""
|
||||
|
||||
def readable_str(self) -> str:
|
||||
if self.content is not None:
|
||||
return str(self.role) + ': ' + str(self.get_content_platform_message_chain())
|
||||
elif self.tool_calls is not None:
|
||||
return f'调用工具: {self.tool_calls[0].id}'
|
||||
else:
|
||||
return '未知消息'
|
||||
|
||||
def get_content_platform_message_chain(self, prefix_text: str = '') -> platform_message.MessageChain | None:
|
||||
"""将内容转换为平台消息 MessageChain 对象
|
||||
|
||||
Args:
|
||||
prefix_text (str): 首个文字组件的前缀文本
|
||||
"""
|
||||
|
||||
if self.content is None:
|
||||
return None
|
||||
elif isinstance(self.content, str):
|
||||
return platform_message.MessageChain([platform_message.Plain(prefix_text + self.content)])
|
||||
elif isinstance(self.content, list):
|
||||
mc = []
|
||||
for ce in self.content:
|
||||
if ce.type == 'text':
|
||||
mc.append(platform_message.Plain(ce.text))
|
||||
elif ce.type == 'image_url':
|
||||
if ce.image_url.url.startswith('http'):
|
||||
mc.append(platform_message.Image(url=ce.image_url.url))
|
||||
else: # base64
|
||||
b64_str = ce.image_url.url
|
||||
|
||||
if b64_str.startswith('data:'):
|
||||
b64_str = b64_str.split(',')[1]
|
||||
|
||||
mc.append(platform_message.Image(base64=b64_str))
|
||||
|
||||
# 找第一个文字组件
|
||||
if prefix_text:
|
||||
for i, c in enumerate(mc):
|
||||
if isinstance(c, platform_message.Plain):
|
||||
mc[i] = platform_message.Plain(prefix_text + c.text)
|
||||
break
|
||||
else:
|
||||
mc.insert(0, platform_message.Plain(prefix_text))
|
||||
|
||||
return platform_message.MessageChain(mc)
|
||||
|
||||
|
||||
class ToolCallChunk(pydantic.BaseModel):
|
||||
"""工具调用"""
|
||||
|
||||
id: str
|
||||
"""工具调用ID"""
|
||||
|
||||
type: str
|
||||
"""工具调用类型"""
|
||||
|
||||
function: FunctionCall
|
||||
"""函数调用"""
|
||||
|
||||
|
||||
class Prompt(pydantic.BaseModel):
|
||||
"""供AI使用的Prompt"""
|
||||
|
||||
|
||||
@@ -17,7 +17,7 @@ class LLMModelInfo(pydantic.BaseModel):
|
||||
|
||||
token_mgr: token.TokenManager
|
||||
|
||||
requester: requester.LLMAPIRequester
|
||||
requester: requester.ProviderAPIRequester
|
||||
|
||||
tool_call_supported: typing.Optional[bool] = False
|
||||
|
||||
|
||||
@@ -18,7 +18,7 @@ class ModelManager:
|
||||
|
||||
model_list: list[entities.LLMModelInfo] # deprecated
|
||||
|
||||
requesters: dict[str, requester.LLMAPIRequester] # deprecated
|
||||
requesters: dict[str, requester.ProviderAPIRequester] # deprecated
|
||||
|
||||
token_mgrs: dict[str, token.TokenManager] # deprecated
|
||||
|
||||
@@ -28,9 +28,11 @@ class ModelManager:
|
||||
|
||||
llm_models: list[requester.RuntimeLLMModel]
|
||||
|
||||
embedding_models: list[requester.RuntimeEmbeddingModel]
|
||||
|
||||
requester_components: list[engine.Component]
|
||||
|
||||
requester_dict: dict[str, type[requester.LLMAPIRequester]] # cache
|
||||
requester_dict: dict[str, type[requester.ProviderAPIRequester]] # cache
|
||||
|
||||
def __init__(self, ap: app.Application):
|
||||
self.ap = ap
|
||||
@@ -38,6 +40,7 @@ class ModelManager:
|
||||
self.requesters = {}
|
||||
self.token_mgrs = {}
|
||||
self.llm_models = []
|
||||
self.embedding_models = []
|
||||
self.requester_components = []
|
||||
self.requester_dict = {}
|
||||
|
||||
@@ -45,7 +48,7 @@ class ModelManager:
|
||||
self.requester_components = self.ap.discover.get_components_by_kind('LLMAPIRequester')
|
||||
|
||||
# forge requester class dict
|
||||
requester_dict: dict[str, type[requester.LLMAPIRequester]] = {}
|
||||
requester_dict: dict[str, type[requester.ProviderAPIRequester]] = {}
|
||||
for component in self.requester_components:
|
||||
requester_dict[component.metadata.name] = component.get_python_component_class()
|
||||
|
||||
@@ -58,13 +61,11 @@ class ModelManager:
|
||||
self.ap.logger.info('Loading models from db...')
|
||||
|
||||
self.llm_models = []
|
||||
self.embedding_models = []
|
||||
|
||||
# llm models
|
||||
result = await self.ap.persistence_mgr.execute_async(sqlalchemy.select(persistence_model.LLMModel))
|
||||
|
||||
llm_models = result.all()
|
||||
|
||||
# load models
|
||||
for llm_model in llm_models:
|
||||
try:
|
||||
await self.load_llm_model(llm_model)
|
||||
@@ -73,11 +74,17 @@ class ModelManager:
|
||||
except Exception as e:
|
||||
self.ap.logger.error(f'Failed to load model {llm_model.uuid}: {e}\n{traceback.format_exc()}')
|
||||
|
||||
# embedding models
|
||||
result = await self.ap.persistence_mgr.execute_async(sqlalchemy.select(persistence_model.EmbeddingModel))
|
||||
embedding_models = result.all()
|
||||
for embedding_model in embedding_models:
|
||||
await self.load_embedding_model(embedding_model)
|
||||
|
||||
async def init_runtime_llm_model(
|
||||
self,
|
||||
model_info: persistence_model.LLMModel | sqlalchemy.Row[persistence_model.LLMModel] | dict,
|
||||
):
|
||||
"""初始化运行时模型"""
|
||||
"""初始化运行时 LLM 模型"""
|
||||
if isinstance(model_info, sqlalchemy.Row):
|
||||
model_info = persistence_model.LLMModel(**model_info._mapping)
|
||||
elif isinstance(model_info, dict):
|
||||
@@ -101,14 +108,47 @@ class ModelManager:
|
||||
|
||||
return runtime_llm_model
|
||||
|
||||
async def init_runtime_embedding_model(
|
||||
self,
|
||||
model_info: persistence_model.EmbeddingModel | sqlalchemy.Row[persistence_model.EmbeddingModel] | dict,
|
||||
):
|
||||
"""初始化运行时 Embedding 模型"""
|
||||
if isinstance(model_info, sqlalchemy.Row):
|
||||
model_info = persistence_model.EmbeddingModel(**model_info._mapping)
|
||||
elif isinstance(model_info, dict):
|
||||
model_info = persistence_model.EmbeddingModel(**model_info)
|
||||
|
||||
requester_inst = self.requester_dict[model_info.requester](ap=self.ap, config=model_info.requester_config)
|
||||
|
||||
await requester_inst.initialize()
|
||||
|
||||
runtime_embedding_model = requester.RuntimeEmbeddingModel(
|
||||
model_entity=model_info,
|
||||
token_mgr=token.TokenManager(
|
||||
name=model_info.uuid,
|
||||
tokens=model_info.api_keys,
|
||||
),
|
||||
requester=requester_inst,
|
||||
)
|
||||
|
||||
return runtime_embedding_model
|
||||
|
||||
async def load_llm_model(
|
||||
self,
|
||||
model_info: persistence_model.LLMModel | sqlalchemy.Row[persistence_model.LLMModel] | dict,
|
||||
):
|
||||
"""加载模型"""
|
||||
"""加载 LLM 模型"""
|
||||
runtime_llm_model = await self.init_runtime_llm_model(model_info)
|
||||
self.llm_models.append(runtime_llm_model)
|
||||
|
||||
async def load_embedding_model(
|
||||
self,
|
||||
model_info: persistence_model.EmbeddingModel | sqlalchemy.Row[persistence_model.EmbeddingModel] | dict,
|
||||
):
|
||||
"""加载 Embedding 模型"""
|
||||
runtime_embedding_model = await self.init_runtime_embedding_model(model_info)
|
||||
self.embedding_models.append(runtime_embedding_model)
|
||||
|
||||
async def get_model_by_name(self, name: str) -> entities.LLMModelInfo: # deprecated
|
||||
"""通过名称获取模型"""
|
||||
for model in self.model_list:
|
||||
@@ -116,23 +156,44 @@ class ModelManager:
|
||||
return model
|
||||
raise ValueError(f'无法确定模型 {name} 的信息')
|
||||
|
||||
async def get_model_by_uuid(self, uuid: str) -> entities.LLMModelInfo:
|
||||
"""通过uuid获取模型"""
|
||||
async def get_model_by_uuid(self, uuid: str) -> requester.RuntimeLLMModel:
|
||||
"""通过uuid获取 LLM 模型"""
|
||||
for model in self.llm_models:
|
||||
if model.model_entity.uuid == uuid:
|
||||
return model
|
||||
raise ValueError(f'model {uuid} not found')
|
||||
raise ValueError(f'LLM model {uuid} not found')
|
||||
|
||||
async def get_embedding_model_by_uuid(self, uuid: str) -> requester.RuntimeEmbeddingModel:
|
||||
"""通过uuid获取 Embedding 模型"""
|
||||
for model in self.embedding_models:
|
||||
if model.model_entity.uuid == uuid:
|
||||
return model
|
||||
raise ValueError(f'Embedding model {uuid} not found')
|
||||
|
||||
async def remove_llm_model(self, model_uuid: str):
|
||||
"""移除模型"""
|
||||
"""移除 LLM 模型"""
|
||||
for model in self.llm_models:
|
||||
if model.model_entity.uuid == model_uuid:
|
||||
self.llm_models.remove(model)
|
||||
return
|
||||
|
||||
def get_available_requesters_info(self) -> list[dict]:
|
||||
async def remove_embedding_model(self, model_uuid: str):
|
||||
"""移除 Embedding 模型"""
|
||||
for model in self.embedding_models:
|
||||
if model.model_entity.uuid == model_uuid:
|
||||
self.embedding_models.remove(model)
|
||||
return
|
||||
|
||||
def get_available_requesters_info(self, model_type: str) -> list[dict]:
|
||||
"""获取所有可用的请求器"""
|
||||
return [component.to_plain_dict() for component in self.requester_components]
|
||||
if model_type != '':
|
||||
return [
|
||||
component.to_plain_dict()
|
||||
for component in self.requester_components
|
||||
if model_type in component.spec['support_type']
|
||||
]
|
||||
else:
|
||||
return [component.to_plain_dict() for component in self.requester_components]
|
||||
|
||||
def get_available_requester_info_by_name(self, name: str) -> dict | None:
|
||||
"""通过名称获取请求器信息"""
|
||||
|
||||
@@ -20,22 +20,45 @@ class RuntimeLLMModel:
|
||||
token_mgr: token.TokenManager
|
||||
"""api key管理器"""
|
||||
|
||||
requester: LLMAPIRequester
|
||||
requester: ProviderAPIRequester
|
||||
"""请求器实例"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_entity: persistence_model.LLMModel,
|
||||
token_mgr: token.TokenManager,
|
||||
requester: LLMAPIRequester,
|
||||
requester: ProviderAPIRequester,
|
||||
):
|
||||
self.model_entity = model_entity
|
||||
self.token_mgr = token_mgr
|
||||
self.requester = requester
|
||||
|
||||
|
||||
class LLMAPIRequester(metaclass=abc.ABCMeta):
|
||||
"""LLM API请求器"""
|
||||
class RuntimeEmbeddingModel:
|
||||
"""运行时 Embedding 模型"""
|
||||
|
||||
model_entity: persistence_model.EmbeddingModel
|
||||
"""模型数据"""
|
||||
|
||||
token_mgr: token.TokenManager
|
||||
"""api key管理器"""
|
||||
|
||||
requester: ProviderAPIRequester
|
||||
"""请求器实例"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_entity: persistence_model.EmbeddingModel,
|
||||
token_mgr: token.TokenManager,
|
||||
requester: ProviderAPIRequester,
|
||||
):
|
||||
self.model_entity = model_entity
|
||||
self.token_mgr = token_mgr
|
||||
self.requester = requester
|
||||
|
||||
|
||||
class ProviderAPIRequester(metaclass=abc.ABCMeta):
|
||||
"""Provider API请求器"""
|
||||
|
||||
name: str = None
|
||||
|
||||
@@ -61,6 +84,7 @@ class LLMAPIRequester(metaclass=abc.ABCMeta):
|
||||
messages: typing.List[llm_entities.Message],
|
||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
"""调用API
|
||||
|
||||
@@ -69,8 +93,51 @@ class LLMAPIRequester(metaclass=abc.ABCMeta):
|
||||
messages (typing.List[llm_entities.Message]): 消息对象列表
|
||||
funcs (typing.List[tools_entities.LLMFunction], optional): 使用的工具函数列表. Defaults to None.
|
||||
extra_args (dict[str, typing.Any], optional): 额外的参数. Defaults to {}.
|
||||
remove_think (bool, optional): 是否移思考中的消息. Defaults to False.
|
||||
|
||||
Returns:
|
||||
llm_entities.Message: 返回消息对象
|
||||
"""
|
||||
pass
|
||||
|
||||
async def invoke_llm_stream(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
model: RuntimeLLMModel,
|
||||
messages: typing.List[llm_entities.Message],
|
||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.MessageChunk:
|
||||
"""调用API
|
||||
|
||||
Args:
|
||||
model (RuntimeLLMModel): 使用的模型信息
|
||||
messages (typing.List[llm_entities.Message]): 消息对象列表
|
||||
funcs (typing.List[tools_entities.LLMFunction], optional): 使用的工具函数列表. Defaults to None.
|
||||
extra_args (dict[str, typing.Any], optional): 额外的参数. Defaults to {}.
|
||||
remove_think (bool, optional): 是否移除思考中的消息. Defaults to False.
|
||||
|
||||
Returns:
|
||||
typing.AsyncGenerator[llm_entities.MessageChunk]: 返回消息对象
|
||||
"""
|
||||
pass
|
||||
|
||||
async def invoke_embedding(
|
||||
self,
|
||||
model: RuntimeEmbeddingModel,
|
||||
input_text: list[str],
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
) -> list[list[float]]:
|
||||
"""调用 Embedding API
|
||||
|
||||
Args:
|
||||
query (core_entities.Query): 请求上下文
|
||||
model (RuntimeEmbeddingModel): 使用的模型信息
|
||||
input_text (list[str]): 输入文本
|
||||
extra_args (dict[str, typing.Any], optional): 额外的参数. Defaults to {}.
|
||||
|
||||
Returns:
|
||||
list[list[float]]: 返回的 embedding 向量
|
||||
"""
|
||||
pass
|
||||
|
||||
@@ -22,6 +22,9 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
- text-embedding
|
||||
execution:
|
||||
python:
|
||||
path: ./302aichatcmpl.py
|
||||
|
||||
@@ -15,13 +15,13 @@ from ...tools import entities as tools_entities
|
||||
from ....utils import image
|
||||
|
||||
|
||||
class AnthropicMessages(requester.LLMAPIRequester):
|
||||
class AnthropicMessages(requester.ProviderAPIRequester):
|
||||
"""Anthropic Messages API 请求器"""
|
||||
|
||||
client: anthropic.AsyncAnthropic
|
||||
|
||||
default_config: dict[str, typing.Any] = {
|
||||
'base_url': 'https://api.anthropic.com/v1',
|
||||
'base_url': 'https://api.anthropic.com',
|
||||
'timeout': 120,
|
||||
}
|
||||
|
||||
@@ -44,6 +44,7 @@ class AnthropicMessages(requester.LLMAPIRequester):
|
||||
self.client = anthropic.AsyncAnthropic(
|
||||
api_key='',
|
||||
http_client=httpx_client,
|
||||
base_url=self.requester_cfg['base_url'],
|
||||
)
|
||||
|
||||
async def invoke_llm(
|
||||
@@ -53,6 +54,7 @@ class AnthropicMessages(requester.LLMAPIRequester):
|
||||
messages: typing.List[llm_entities.Message],
|
||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
self.client.api_key = model.token_mgr.get_token()
|
||||
|
||||
@@ -89,7 +91,8 @@ class AnthropicMessages(requester.LLMAPIRequester):
|
||||
{
|
||||
'type': 'tool_result',
|
||||
'tool_use_id': tool_call_id,
|
||||
'content': m.content,
|
||||
'is_error': False,
|
||||
'content': [{'type': 'text', 'text': m.content}],
|
||||
}
|
||||
],
|
||||
}
|
||||
@@ -133,6 +136,9 @@ class AnthropicMessages(requester.LLMAPIRequester):
|
||||
|
||||
args['messages'] = req_messages
|
||||
|
||||
if 'thinking' in args:
|
||||
args['thinking'] = {'type': 'enabled', 'budget_tokens': 10000}
|
||||
|
||||
if funcs:
|
||||
tools = await self.ap.tool_mgr.generate_tools_for_anthropic(funcs)
|
||||
|
||||
@@ -140,19 +146,17 @@ class AnthropicMessages(requester.LLMAPIRequester):
|
||||
args['tools'] = tools
|
||||
|
||||
try:
|
||||
# print(json.dumps(args, indent=4, ensure_ascii=False))
|
||||
resp = await self.client.messages.create(**args)
|
||||
|
||||
args = {
|
||||
'content': '',
|
||||
'role': resp.role,
|
||||
}
|
||||
|
||||
assert type(resp) is anthropic.types.message.Message
|
||||
|
||||
for block in resp.content:
|
||||
if block.type == 'thinking':
|
||||
args['content'] = '<think>' + block.thinking + '</think>\n' + args['content']
|
||||
if not remove_think and block.type == 'thinking':
|
||||
args['content'] = '<think>\n' + block.thinking + '\n</think>\n' + args['content']
|
||||
elif block.type == 'text':
|
||||
args['content'] += block.text
|
||||
elif block.type == 'tool_use':
|
||||
@@ -176,3 +180,191 @@ class AnthropicMessages(requester.LLMAPIRequester):
|
||||
raise errors.RequesterError(f'模型无效: {e.message}')
|
||||
else:
|
||||
raise errors.RequesterError(f'请求地址无效: {e.message}')
|
||||
|
||||
async def invoke_llm_stream(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
model: requester.RuntimeLLMModel,
|
||||
messages: typing.List[llm_entities.Message],
|
||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
self.client.api_key = model.token_mgr.get_token()
|
||||
|
||||
args = extra_args.copy()
|
||||
args['model'] = model.model_entity.name
|
||||
args['stream'] = True
|
||||
|
||||
# 处理消息
|
||||
|
||||
# system
|
||||
system_role_message = None
|
||||
|
||||
for i, m in enumerate(messages):
|
||||
if m.role == 'system':
|
||||
system_role_message = m
|
||||
|
||||
break
|
||||
|
||||
if system_role_message:
|
||||
messages.pop(i)
|
||||
|
||||
if isinstance(system_role_message, llm_entities.Message) and isinstance(system_role_message.content, str):
|
||||
args['system'] = system_role_message.content
|
||||
|
||||
req_messages = []
|
||||
|
||||
for m in messages:
|
||||
if m.role == 'tool':
|
||||
tool_call_id = m.tool_call_id
|
||||
|
||||
req_messages.append(
|
||||
{
|
||||
'role': 'user',
|
||||
'content': [
|
||||
{
|
||||
'type': 'tool_result',
|
||||
'tool_use_id': tool_call_id,
|
||||
'is_error': False, # 暂时直接写false
|
||||
'content': [
|
||||
{'type': 'text', 'text': m.content}
|
||||
], # 这里要是list包裹,应该是多个返回的情况?type类型好像也可以填其他的,暂时只写text
|
||||
}
|
||||
],
|
||||
}
|
||||
)
|
||||
|
||||
continue
|
||||
|
||||
msg_dict = m.dict(exclude_none=True)
|
||||
|
||||
if isinstance(m.content, str) and m.content.strip() != '':
|
||||
msg_dict['content'] = [{'type': 'text', 'text': m.content}]
|
||||
elif isinstance(m.content, list):
|
||||
for i, ce in enumerate(m.content):
|
||||
if ce.type == 'image_base64':
|
||||
image_b64, image_format = await image.extract_b64_and_format(ce.image_base64)
|
||||
|
||||
alter_image_ele = {
|
||||
'type': 'image',
|
||||
'source': {
|
||||
'type': 'base64',
|
||||
'media_type': f'image/{image_format}',
|
||||
'data': image_b64,
|
||||
},
|
||||
}
|
||||
msg_dict['content'][i] = alter_image_ele
|
||||
if isinstance(msg_dict['content'], str) and msg_dict['content'] == '':
|
||||
msg_dict['content'] = [] # 这里不知道为什么会莫名有个空导致content为字符
|
||||
if m.tool_calls:
|
||||
for tool_call in m.tool_calls:
|
||||
msg_dict['content'].append(
|
||||
{
|
||||
'type': 'tool_use',
|
||||
'id': tool_call.id,
|
||||
'name': tool_call.function.name,
|
||||
'input': json.loads(tool_call.function.arguments),
|
||||
}
|
||||
)
|
||||
|
||||
del msg_dict['tool_calls']
|
||||
|
||||
req_messages.append(msg_dict)
|
||||
if 'thinking' in args:
|
||||
args['thinking'] = {'type': 'enabled', 'budget_tokens': 10000}
|
||||
|
||||
args['messages'] = req_messages
|
||||
|
||||
if funcs:
|
||||
tools = await self.ap.tool_mgr.generate_tools_for_anthropic(funcs)
|
||||
|
||||
if tools:
|
||||
args['tools'] = tools
|
||||
|
||||
try:
|
||||
role = 'assistant' # 默认角色
|
||||
# chunk_idx = 0
|
||||
think_started = False
|
||||
think_ended = False
|
||||
finish_reason = False
|
||||
content = ''
|
||||
tool_name = ''
|
||||
tool_id = ''
|
||||
async for chunk in await self.client.messages.create(**args):
|
||||
tool_call = {'id': None, 'function': {'name': None, 'arguments': None}, 'type': 'function'}
|
||||
if isinstance(
|
||||
chunk, anthropic.types.raw_content_block_start_event.RawContentBlockStartEvent
|
||||
): # 记录开始
|
||||
if chunk.content_block.type == 'tool_use':
|
||||
if chunk.content_block.name is not None:
|
||||
tool_name = chunk.content_block.name
|
||||
if chunk.content_block.id is not None:
|
||||
tool_id = chunk.content_block.id
|
||||
|
||||
tool_call['function']['name'] = tool_name
|
||||
tool_call['function']['arguments'] = ''
|
||||
tool_call['id'] = tool_id
|
||||
|
||||
if not remove_think:
|
||||
if chunk.content_block.type == 'thinking' and not remove_think:
|
||||
think_started = True
|
||||
elif chunk.content_block.type == 'text' and chunk.index != 0 and not remove_think:
|
||||
think_ended = True
|
||||
continue
|
||||
elif isinstance(chunk, anthropic.types.raw_content_block_delta_event.RawContentBlockDeltaEvent):
|
||||
if chunk.delta.type == 'thinking_delta':
|
||||
if think_started:
|
||||
think_started = False
|
||||
content = '<think>\n' + chunk.delta.thinking
|
||||
elif remove_think:
|
||||
continue
|
||||
else:
|
||||
content = chunk.delta.thinking
|
||||
elif chunk.delta.type == 'text_delta':
|
||||
if think_ended:
|
||||
think_ended = False
|
||||
content = '\n</think>\n' + chunk.delta.text
|
||||
else:
|
||||
content = chunk.delta.text
|
||||
elif chunk.delta.type == 'input_json_delta':
|
||||
tool_call['function']['arguments'] = chunk.delta.partial_json
|
||||
tool_call['function']['name'] = tool_name
|
||||
tool_call['id'] = tool_id
|
||||
elif isinstance(chunk, anthropic.types.raw_content_block_stop_event.RawContentBlockStopEvent):
|
||||
continue # 记录raw_content_block结束的
|
||||
|
||||
elif isinstance(chunk, anthropic.types.raw_message_delta_event.RawMessageDeltaEvent):
|
||||
if chunk.delta.stop_reason == 'end_turn':
|
||||
finish_reason = True
|
||||
elif isinstance(chunk, anthropic.types.raw_message_stop_event.RawMessageStopEvent):
|
||||
continue # 这个好像是完全结束
|
||||
else:
|
||||
# print(chunk)
|
||||
self.ap.logger.debug(f'anthropic chunk: {chunk}')
|
||||
continue
|
||||
|
||||
args = {
|
||||
'content': content,
|
||||
'role': role,
|
||||
'is_final': finish_reason,
|
||||
'tool_calls': None if tool_call['id'] is None else [tool_call],
|
||||
}
|
||||
# if chunk_idx == 0:
|
||||
# chunk_idx += 1
|
||||
# continue
|
||||
|
||||
# assert type(chunk) is anthropic.types.message.Chunk
|
||||
|
||||
yield llm_entities.MessageChunk(**args)
|
||||
|
||||
# return llm_entities.Message(**args)
|
||||
except anthropic.AuthenticationError as e:
|
||||
raise errors.RequesterError(f'api-key 无效: {e.message}')
|
||||
except anthropic.BadRequestError as e:
|
||||
raise errors.RequesterError(str(e.message))
|
||||
except anthropic.NotFoundError as e:
|
||||
if 'model: ' in str(e):
|
||||
raise errors.RequesterError(f'模型无效: {e.message}')
|
||||
else:
|
||||
raise errors.RequesterError(f'请求地址无效: {e.message}')
|
||||
|
||||
@@ -14,7 +14,7 @@ spec:
|
||||
zh_Hans: 基础 URL
|
||||
type: string
|
||||
required: true
|
||||
default: "https://api.anthropic.com/v1"
|
||||
default: "https://api.anthropic.com"
|
||||
- name: timeout
|
||||
label:
|
||||
en_US: Timeout
|
||||
@@ -22,6 +22,8 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
execution:
|
||||
python:
|
||||
path: ./anthropicmsgs.py
|
||||
|
||||
@@ -22,6 +22,8 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
execution:
|
||||
python:
|
||||
path: ./bailianchatcmpl.py
|
||||
|
||||
@@ -13,7 +13,7 @@ from ... import entities as llm_entities
|
||||
from ...tools import entities as tools_entities
|
||||
|
||||
|
||||
class OpenAIChatCompletions(requester.LLMAPIRequester):
|
||||
class OpenAIChatCompletions(requester.ProviderAPIRequester):
|
||||
"""OpenAI ChatCompletion API 请求器"""
|
||||
|
||||
client: openai.AsyncClient
|
||||
@@ -38,9 +38,18 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
||||
) -> chat_completion.ChatCompletion:
|
||||
return await self.client.chat.completions.create(**args, extra_body=extra_body)
|
||||
|
||||
async def _req_stream(
|
||||
self,
|
||||
args: dict,
|
||||
extra_body: dict = {},
|
||||
):
|
||||
async for chunk in await self.client.chat.completions.create(**args, extra_body=extra_body):
|
||||
yield chunk
|
||||
|
||||
async def _make_msg(
|
||||
self,
|
||||
chat_completion: chat_completion.ChatCompletion,
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
chatcmpl_message = chat_completion.choices[0].message.model_dump()
|
||||
|
||||
@@ -48,16 +57,192 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
||||
if 'role' not in chatcmpl_message or chatcmpl_message['role'] is None:
|
||||
chatcmpl_message['role'] = 'assistant'
|
||||
|
||||
reasoning_content = chatcmpl_message['reasoning_content'] if 'reasoning_content' in chatcmpl_message else None
|
||||
# 处理思维链
|
||||
content = chatcmpl_message.get('content', '')
|
||||
reasoning_content = chatcmpl_message.get('reasoning_content', None)
|
||||
|
||||
# deepseek的reasoner模型
|
||||
if reasoning_content is not None:
|
||||
chatcmpl_message['content'] = '<think>\n' + reasoning_content + '\n</think>\n' + chatcmpl_message['content']
|
||||
processed_content, _ = await self._process_thinking_content(
|
||||
content=content, reasoning_content=reasoning_content, remove_think=remove_think
|
||||
)
|
||||
|
||||
chatcmpl_message['content'] = processed_content
|
||||
|
||||
# 移除 reasoning_content 字段,避免传递给 Message
|
||||
if 'reasoning_content' in chatcmpl_message:
|
||||
del chatcmpl_message['reasoning_content']
|
||||
|
||||
message = llm_entities.Message(**chatcmpl_message)
|
||||
|
||||
return message
|
||||
|
||||
async def _process_thinking_content(
|
||||
self,
|
||||
content: str,
|
||||
reasoning_content: str = None,
|
||||
remove_think: bool = False,
|
||||
) -> tuple[str, str]:
|
||||
"""处理思维链内容
|
||||
|
||||
Args:
|
||||
content: 原始内容
|
||||
reasoning_content: reasoning_content 字段内容
|
||||
remove_think: 是否移除思维链
|
||||
|
||||
Returns:
|
||||
(处理后的内容, 提取的思维链内容)
|
||||
"""
|
||||
thinking_content = ''
|
||||
|
||||
# 1. 从 reasoning_content 提取思维链
|
||||
if reasoning_content:
|
||||
thinking_content = reasoning_content
|
||||
|
||||
# 2. 从 content 中提取 <think> 标签内容
|
||||
if content and '<think>' in content and '</think>' in content:
|
||||
import re
|
||||
|
||||
think_pattern = r'<think>(.*?)</think>'
|
||||
think_matches = re.findall(think_pattern, content, re.DOTALL)
|
||||
if think_matches:
|
||||
# 如果已有 reasoning_content,则追加
|
||||
if thinking_content:
|
||||
thinking_content += '\n' + '\n'.join(think_matches)
|
||||
else:
|
||||
thinking_content = '\n'.join(think_matches)
|
||||
# 移除 content 中的 <think> 标签
|
||||
content = re.sub(think_pattern, '', content, flags=re.DOTALL).strip()
|
||||
|
||||
# 3. 根据 remove_think 参数决定是否保留思维链
|
||||
if remove_think:
|
||||
return content, ''
|
||||
else:
|
||||
# 如果有思维链内容,将其以 <think> 格式添加到 content 开头
|
||||
if thinking_content:
|
||||
content = f'<think>\n{thinking_content}\n</think>\n{content}'.strip()
|
||||
return content, thinking_content
|
||||
|
||||
async def _closure_stream(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
req_messages: list[dict],
|
||||
use_model: requester.RuntimeLLMModel,
|
||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.MessageChunk:
|
||||
self.client.api_key = use_model.token_mgr.get_token()
|
||||
|
||||
args = {}
|
||||
args['model'] = use_model.model_entity.name
|
||||
|
||||
if use_funcs:
|
||||
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
|
||||
if tools:
|
||||
args['tools'] = tools
|
||||
|
||||
# 设置此次请求中的messages
|
||||
messages = req_messages.copy()
|
||||
|
||||
# 检查vision
|
||||
for msg in messages:
|
||||
if 'content' in msg and isinstance(msg['content'], list):
|
||||
for me in msg['content']:
|
||||
if me['type'] == 'image_base64':
|
||||
me['image_url'] = {'url': me['image_base64']}
|
||||
me['type'] = 'image_url'
|
||||
del me['image_base64']
|
||||
|
||||
args['messages'] = messages
|
||||
args['stream'] = True
|
||||
|
||||
# 流式处理状态
|
||||
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
|
||||
chunk_idx = 0
|
||||
thinking_started = False
|
||||
thinking_ended = False
|
||||
role = 'assistant' # 默认角色
|
||||
tool_id = ""
|
||||
tool_name = ''
|
||||
# accumulated_reasoning = '' # 仅用于判断何时结束思维链
|
||||
|
||||
async for chunk in self._req_stream(args, extra_body=extra_args):
|
||||
# 解析 chunk 数据
|
||||
|
||||
if hasattr(chunk, 'choices') and chunk.choices:
|
||||
choice = chunk.choices[0]
|
||||
delta = choice.delta.model_dump() if hasattr(choice, 'delta') else {}
|
||||
|
||||
finish_reason = getattr(choice, 'finish_reason', None)
|
||||
else:
|
||||
delta = {}
|
||||
finish_reason = None
|
||||
# 从第一个 chunk 获取 role,后续使用这个 role
|
||||
if 'role' in delta and delta['role']:
|
||||
role = delta['role']
|
||||
|
||||
# 获取增量内容
|
||||
delta_content = delta.get('content', '')
|
||||
reasoning_content = delta.get('reasoning_content', '')
|
||||
|
||||
# 处理 reasoning_content
|
||||
if reasoning_content:
|
||||
# accumulated_reasoning += reasoning_content
|
||||
# 如果设置了 remove_think,跳过 reasoning_content
|
||||
if remove_think:
|
||||
chunk_idx += 1
|
||||
continue
|
||||
|
||||
# 第一次出现 reasoning_content,添加 <think> 开始标签
|
||||
if not thinking_started:
|
||||
thinking_started = True
|
||||
delta_content = '<think>\n' + reasoning_content
|
||||
else:
|
||||
# 继续输出 reasoning_content
|
||||
delta_content = reasoning_content
|
||||
elif thinking_started and not thinking_ended and delta_content:
|
||||
# reasoning_content 结束,normal content 开始,添加 </think> 结束标签
|
||||
thinking_ended = True
|
||||
delta_content = '\n</think>\n' + delta_content
|
||||
|
||||
# 处理 content 中已有的 <think> 标签(如果需要移除)
|
||||
# if delta_content and remove_think and '<think>' in delta_content:
|
||||
# import re
|
||||
#
|
||||
# # 移除 <think> 标签及其内容
|
||||
# delta_content = re.sub(r'<think>.*?</think>', '', delta_content, flags=re.DOTALL)
|
||||
|
||||
# 处理工具调用增量
|
||||
# delta_tool_calls = None
|
||||
if delta.get('tool_calls'):
|
||||
for tool_call in delta['tool_calls']:
|
||||
if tool_call['id'] and tool_call['function']['name']:
|
||||
tool_id = tool_call['id']
|
||||
tool_name = tool_call['function']['name']
|
||||
else:
|
||||
tool_call['id'] = tool_id
|
||||
tool_call['function']['name'] = tool_name
|
||||
if tool_call['type'] is None:
|
||||
tool_call['type'] = 'function'
|
||||
|
||||
|
||||
|
||||
# 跳过空的第一个 chunk(只有 role 没有内容)
|
||||
if chunk_idx == 0 and not delta_content and not reasoning_content and not delta.get('tool_calls'):
|
||||
chunk_idx += 1
|
||||
continue
|
||||
# 构建 MessageChunk - 只包含增量内容
|
||||
chunk_data = {
|
||||
'role': role,
|
||||
'content': delta_content if delta_content else None,
|
||||
'tool_calls': delta.get('tool_calls'),
|
||||
'is_final': bool(finish_reason),
|
||||
}
|
||||
|
||||
# 移除 None 值
|
||||
chunk_data = {k: v for k, v in chunk_data.items() if v is not None}
|
||||
|
||||
yield llm_entities.MessageChunk(**chunk_data)
|
||||
chunk_idx += 1
|
||||
|
||||
async def _closure(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
@@ -65,6 +250,7 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
||||
use_model: requester.RuntimeLLMModel,
|
||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
self.client.api_key = use_model.token_mgr.get_token()
|
||||
|
||||
@@ -92,10 +278,10 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
||||
args['messages'] = messages
|
||||
|
||||
# 发送请求
|
||||
resp = await self._req(args, extra_body=extra_args)
|
||||
|
||||
resp = await self._req(args, extra_body=extra_args)
|
||||
# 处理请求结果
|
||||
message = await self._make_msg(resp)
|
||||
message = await self._make_msg(resp, remove_think)
|
||||
|
||||
return message
|
||||
|
||||
@@ -106,6 +292,7 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
||||
messages: typing.List[llm_entities.Message],
|
||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
|
||||
for m in messages:
|
||||
@@ -119,13 +306,90 @@ class OpenAIChatCompletions(requester.LLMAPIRequester):
|
||||
req_messages.append(msg_dict)
|
||||
|
||||
try:
|
||||
return await self._closure(
|
||||
msg = await self._closure(
|
||||
query=query,
|
||||
req_messages=req_messages,
|
||||
use_model=model,
|
||||
use_funcs=funcs,
|
||||
extra_args=extra_args,
|
||||
remove_think=remove_think,
|
||||
)
|
||||
return msg
|
||||
except asyncio.TimeoutError:
|
||||
raise errors.RequesterError('请求超时')
|
||||
except openai.BadRequestError as e:
|
||||
if 'context_length_exceeded' in e.message:
|
||||
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
|
||||
else:
|
||||
raise errors.RequesterError(f'请求参数错误: {e.message}')
|
||||
except openai.AuthenticationError as e:
|
||||
raise errors.RequesterError(f'无效的 api-key: {e.message}')
|
||||
except openai.NotFoundError as e:
|
||||
raise errors.RequesterError(f'请求路径错误: {e.message}')
|
||||
except openai.RateLimitError as e:
|
||||
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
|
||||
except openai.APIError as e:
|
||||
raise errors.RequesterError(f'请求错误: {e.message}')
|
||||
|
||||
async def invoke_embedding(
|
||||
self,
|
||||
model: requester.RuntimeEmbeddingModel,
|
||||
input_text: list[str],
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
) -> list[list[float]]:
|
||||
"""调用 Embedding API"""
|
||||
self.client.api_key = model.token_mgr.get_token()
|
||||
|
||||
args = {
|
||||
'model': model.model_entity.name,
|
||||
'input': input_text,
|
||||
}
|
||||
|
||||
if model.model_entity.extra_args:
|
||||
args.update(model.model_entity.extra_args)
|
||||
|
||||
args.update(extra_args)
|
||||
|
||||
try:
|
||||
resp = await self.client.embeddings.create(**args)
|
||||
|
||||
return [d.embedding for d in resp.data]
|
||||
except asyncio.TimeoutError:
|
||||
raise errors.RequesterError('请求超时')
|
||||
except openai.BadRequestError as e:
|
||||
raise errors.RequesterError(f'请求参数错误: {e.message}')
|
||||
|
||||
async def invoke_llm_stream(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
model: requester.RuntimeLLMModel,
|
||||
messages: typing.List[llm_entities.Message],
|
||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.MessageChunk:
|
||||
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
|
||||
for m in messages:
|
||||
msg_dict = m.dict(exclude_none=True)
|
||||
content = msg_dict.get('content')
|
||||
if isinstance(content, list):
|
||||
# 检查 content 列表中是否每个部分都是文本
|
||||
if all(isinstance(part, dict) and part.get('type') == 'text' for part in content):
|
||||
# 将所有文本部分合并为一个字符串
|
||||
msg_dict['content'] = '\n'.join(part['text'] for part in content)
|
||||
req_messages.append(msg_dict)
|
||||
|
||||
try:
|
||||
async for item in self._closure_stream(
|
||||
query=query,
|
||||
req_messages=req_messages,
|
||||
use_model=model,
|
||||
use_funcs=funcs,
|
||||
extra_args=extra_args,
|
||||
remove_think=remove_think,
|
||||
):
|
||||
yield item
|
||||
|
||||
except asyncio.TimeoutError:
|
||||
raise errors.RequesterError('请求超时')
|
||||
except openai.BadRequestError as e:
|
||||
|
||||
@@ -22,6 +22,9 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
- text-embedding
|
||||
execution:
|
||||
python:
|
||||
path: ./chatcmpl.py
|
||||
|
||||
@@ -22,6 +22,8 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
execution:
|
||||
python:
|
||||
path: ./compsharechatcmpl.py
|
||||
|
||||
@@ -24,6 +24,7 @@ class DeepseekChatCompletions(chatcmpl.OpenAIChatCompletions):
|
||||
use_model: requester.RuntimeLLMModel,
|
||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
self.client.api_key = use_model.token_mgr.get_token()
|
||||
|
||||
@@ -49,10 +50,11 @@ class DeepseekChatCompletions(chatcmpl.OpenAIChatCompletions):
|
||||
# 发送请求
|
||||
resp = await self._req(args, extra_body=extra_args)
|
||||
|
||||
# print(resp)
|
||||
|
||||
if resp is None:
|
||||
raise errors.RequesterError('接口返回为空,请确定模型提供商服务是否正常')
|
||||
|
||||
# 处理请求结果
|
||||
message = await self._make_msg(resp)
|
||||
message = await self._make_msg(resp, remove_think)
|
||||
|
||||
return message
|
||||
|
||||
@@ -4,7 +4,7 @@ metadata:
|
||||
name: deepseek-chat-completions
|
||||
label:
|
||||
en_US: DeepSeek
|
||||
zh_Hans: 深度求索
|
||||
zh_Hans: DeepSeek
|
||||
icon: deepseek.svg
|
||||
spec:
|
||||
config:
|
||||
@@ -22,6 +22,8 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
execution:
|
||||
python:
|
||||
path: ./deepseekchatcmpl.py
|
||||
|
||||
@@ -22,6 +22,8 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
execution:
|
||||
python:
|
||||
path: ./geminichatcmpl.py
|
||||
|
||||
@@ -3,14 +3,16 @@ from __future__ import annotations
|
||||
|
||||
import typing
|
||||
|
||||
from . import chatcmpl
|
||||
from . import ppiochatcmpl
|
||||
from .. import requester
|
||||
from ....core import entities as core_entities
|
||||
from ... import entities as llm_entities
|
||||
from ...tools import entities as tools_entities
|
||||
import re
|
||||
import openai.types.chat.chat_completion as chat_completion
|
||||
|
||||
|
||||
class GiteeAIChatCompletions(chatcmpl.OpenAIChatCompletions):
|
||||
class GiteeAIChatCompletions(ppiochatcmpl.PPIOChatCompletions):
|
||||
"""Gitee AI ChatCompletions API 请求器"""
|
||||
|
||||
default_config: dict[str, typing.Any] = {
|
||||
@@ -18,34 +20,3 @@ class GiteeAIChatCompletions(chatcmpl.OpenAIChatCompletions):
|
||||
'timeout': 120,
|
||||
}
|
||||
|
||||
async def _closure(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
req_messages: list[dict],
|
||||
use_model: requester.RuntimeLLMModel,
|
||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
) -> llm_entities.Message:
|
||||
self.client.api_key = use_model.token_mgr.get_token()
|
||||
|
||||
args = {}
|
||||
args['model'] = use_model.model_entity.name
|
||||
|
||||
if use_funcs:
|
||||
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
|
||||
|
||||
if tools:
|
||||
args['tools'] = tools
|
||||
|
||||
# gitee 不支持多模态,把content都转换成纯文字
|
||||
for m in req_messages:
|
||||
if 'content' in m and isinstance(m['content'], list):
|
||||
m['content'] = ' '.join([c['text'] for c in m['content']])
|
||||
|
||||
args['messages'] = req_messages
|
||||
|
||||
resp = await self._req(args, extra_body=extra_args)
|
||||
|
||||
message = await self._make_msg(resp)
|
||||
|
||||
return message
|
||||
|
||||
@@ -22,6 +22,9 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
- text-embedding
|
||||
execution:
|
||||
python:
|
||||
path: ./giteeaichatcmpl.py
|
||||
|
||||
@@ -22,6 +22,9 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
- text-embedding
|
||||
execution:
|
||||
python:
|
||||
path: ./lmstudiochatcmpl.py
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import asyncio
|
||||
import json
|
||||
import typing
|
||||
|
||||
import openai
|
||||
@@ -14,7 +15,7 @@ from ... import entities as llm_entities
|
||||
from ...tools import entities as tools_entities
|
||||
|
||||
|
||||
class ModelScopeChatCompletions(requester.LLMAPIRequester):
|
||||
class ModelScopeChatCompletions(requester.ProviderAPIRequester):
|
||||
"""ModelScope ChatCompletion API 请求器"""
|
||||
|
||||
client: openai.AsyncClient
|
||||
@@ -34,9 +35,11 @@ class ModelScopeChatCompletions(requester.LLMAPIRequester):
|
||||
|
||||
async def _req(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
args: dict,
|
||||
extra_body: dict = {},
|
||||
) -> chat_completion.ChatCompletion:
|
||||
remove_think: bool = False,
|
||||
) -> list[dict[str, typing.Any]]:
|
||||
args['stream'] = True
|
||||
|
||||
chunk = None
|
||||
@@ -47,78 +50,75 @@ class ModelScopeChatCompletions(requester.LLMAPIRequester):
|
||||
|
||||
resp_gen: openai.AsyncStream = await self.client.chat.completions.create(**args, extra_body=extra_body)
|
||||
|
||||
chunk_idx = 0
|
||||
thinking_started = False
|
||||
thinking_ended = False
|
||||
tool_id = ''
|
||||
tool_name = ''
|
||||
message_delta = {}
|
||||
async for chunk in resp_gen:
|
||||
# print(chunk)
|
||||
if not chunk or not chunk.id or not chunk.choices or not chunk.choices[0] or not chunk.choices[0].delta:
|
||||
continue
|
||||
|
||||
if chunk.choices[0].delta.content is not None:
|
||||
pending_content += chunk.choices[0].delta.content
|
||||
delta = chunk.choices[0].delta.model_dump() if hasattr(chunk.choices[0], 'delta') else {}
|
||||
reasoning_content = delta.get('reasoning_content')
|
||||
# 处理 reasoning_content
|
||||
if reasoning_content:
|
||||
# accumulated_reasoning += reasoning_content
|
||||
# 如果设置了 remove_think,跳过 reasoning_content
|
||||
if remove_think:
|
||||
chunk_idx += 1
|
||||
continue
|
||||
|
||||
if chunk.choices[0].delta.tool_calls is not None:
|
||||
for tool_call in chunk.choices[0].delta.tool_calls:
|
||||
if tool_call.function.arguments is None:
|
||||
# 第一次出现 reasoning_content,添加 <think> 开始标签
|
||||
if not thinking_started:
|
||||
thinking_started = True
|
||||
pending_content += '<think>\n' + reasoning_content
|
||||
else:
|
||||
# 继续输出 reasoning_content
|
||||
pending_content += reasoning_content
|
||||
elif thinking_started and not thinking_ended and delta.get('content'):
|
||||
# reasoning_content 结束,normal content 开始,添加 </think> 结束标签
|
||||
thinking_ended = True
|
||||
pending_content += '\n</think>\n' + delta.get('content')
|
||||
|
||||
if delta.get('content') is not None:
|
||||
pending_content += delta.get('content')
|
||||
|
||||
if delta.get('tool_calls') is not None:
|
||||
for tool_call in delta.get('tool_calls'):
|
||||
if tool_call['id'] != '':
|
||||
tool_id = tool_call['id']
|
||||
if tool_call['function']['name'] is not None:
|
||||
tool_name = tool_call['function']['name']
|
||||
if tool_call['function']['arguments'] is None:
|
||||
continue
|
||||
tool_call['id'] = tool_id
|
||||
tool_call['name'] = tool_name
|
||||
for tc in tool_calls:
|
||||
if tc.index == tool_call.index:
|
||||
tc.function.arguments += tool_call.function.arguments
|
||||
if tc['index'] == tool_call['index']:
|
||||
tc['function']['arguments'] += tool_call['function']['arguments']
|
||||
break
|
||||
else:
|
||||
tool_calls.append(tool_call)
|
||||
|
||||
if chunk.choices[0].finish_reason is not None:
|
||||
break
|
||||
message_delta['content'] = pending_content
|
||||
message_delta['role'] = 'assistant'
|
||||
|
||||
real_tool_calls = []
|
||||
|
||||
for tc in tool_calls:
|
||||
function = chat_completion_message_tool_call.Function(
|
||||
name=tc.function.name, arguments=tc.function.arguments
|
||||
)
|
||||
real_tool_calls.append(
|
||||
chat_completion_message_tool_call.ChatCompletionMessageToolCall(
|
||||
id=tc.id, function=function, type='function'
|
||||
)
|
||||
)
|
||||
|
||||
return (
|
||||
chat_completion.ChatCompletion(
|
||||
id=chunk.id,
|
||||
object='chat.completion',
|
||||
created=chunk.created,
|
||||
choices=[
|
||||
chat_completion.Choice(
|
||||
index=0,
|
||||
message=chat_completion.ChatCompletionMessage(
|
||||
role='assistant',
|
||||
content=pending_content,
|
||||
tool_calls=real_tool_calls if len(real_tool_calls) > 0 else None,
|
||||
),
|
||||
finish_reason=chunk.choices[0].finish_reason
|
||||
if hasattr(chunk.choices[0], 'finish_reason') and chunk.choices[0].finish_reason is not None
|
||||
else 'stop',
|
||||
logprobs=chunk.choices[0].logprobs,
|
||||
)
|
||||
],
|
||||
model=chunk.model,
|
||||
service_tier=chunk.service_tier if hasattr(chunk, 'service_tier') else None,
|
||||
system_fingerprint=chunk.system_fingerprint if hasattr(chunk, 'system_fingerprint') else None,
|
||||
usage=chunk.usage if hasattr(chunk, 'usage') else None,
|
||||
)
|
||||
if chunk
|
||||
else None
|
||||
)
|
||||
message_delta['tool_calls'] = tool_calls if tool_calls else None
|
||||
return [message_delta]
|
||||
|
||||
async def _make_msg(
|
||||
self,
|
||||
chat_completion: chat_completion.ChatCompletion,
|
||||
chat_completion: list[dict[str, typing.Any]],
|
||||
) -> llm_entities.Message:
|
||||
chatcmpl_message = chat_completion.choices[0].message.dict()
|
||||
chatcmpl_message = chat_completion[0]
|
||||
|
||||
# 确保 role 字段存在且不为 None
|
||||
if 'role' not in chatcmpl_message or chatcmpl_message['role'] is None:
|
||||
chatcmpl_message['role'] = 'assistant'
|
||||
|
||||
message = llm_entities.Message(**chatcmpl_message)
|
||||
|
||||
return message
|
||||
@@ -130,6 +130,7 @@ class ModelScopeChatCompletions(requester.LLMAPIRequester):
|
||||
use_model: requester.RuntimeLLMModel,
|
||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think:bool = False,
|
||||
) -> llm_entities.Message:
|
||||
self.client.api_key = use_model.token_mgr.get_token()
|
||||
|
||||
@@ -157,13 +158,146 @@ class ModelScopeChatCompletions(requester.LLMAPIRequester):
|
||||
args['messages'] = messages
|
||||
|
||||
# 发送请求
|
||||
resp = await self._req(args, extra_body=extra_args)
|
||||
resp = await self._req(query, args, extra_body=extra_args, remove_think=remove_think)
|
||||
|
||||
# 处理请求结果
|
||||
message = await self._make_msg(resp)
|
||||
|
||||
return message
|
||||
|
||||
async def _req_stream(
|
||||
self,
|
||||
args: dict,
|
||||
extra_body: dict = {},
|
||||
) -> chat_completion.ChatCompletion:
|
||||
async for chunk in await self.client.chat.completions.create(**args, extra_body=extra_body):
|
||||
yield chunk
|
||||
|
||||
|
||||
async def _closure_stream(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
req_messages: list[dict],
|
||||
use_model: requester.RuntimeLLMModel,
|
||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
|
||||
self.client.api_key = use_model.token_mgr.get_token()
|
||||
|
||||
args = {}
|
||||
args['model'] = use_model.model_entity.name
|
||||
|
||||
if use_funcs:
|
||||
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
|
||||
|
||||
if tools:
|
||||
args['tools'] = tools
|
||||
|
||||
# 设置此次请求中的messages
|
||||
messages = req_messages.copy()
|
||||
|
||||
# 检查vision
|
||||
for msg in messages:
|
||||
if 'content' in msg and isinstance(msg['content'], list):
|
||||
for me in msg['content']:
|
||||
if me['type'] == 'image_base64':
|
||||
me['image_url'] = {'url': me['image_base64']}
|
||||
me['type'] = 'image_url'
|
||||
del me['image_base64']
|
||||
|
||||
args['messages'] = messages
|
||||
args['stream'] = True
|
||||
|
||||
|
||||
# 流式处理状态
|
||||
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
|
||||
chunk_idx = 0
|
||||
thinking_started = False
|
||||
thinking_ended = False
|
||||
role = 'assistant' # 默认角色
|
||||
# accumulated_reasoning = '' # 仅用于判断何时结束思维链
|
||||
|
||||
async for chunk in self._req_stream(args, extra_body=extra_args):
|
||||
# 解析 chunk 数据
|
||||
if hasattr(chunk, 'choices') and chunk.choices:
|
||||
choice = chunk.choices[0]
|
||||
delta = choice.delta.model_dump() if hasattr(choice, 'delta') else {}
|
||||
finish_reason = getattr(choice, 'finish_reason', None)
|
||||
else:
|
||||
delta = {}
|
||||
finish_reason = None
|
||||
|
||||
# 从第一个 chunk 获取 role,后续使用这个 role
|
||||
if 'role' in delta and delta['role']:
|
||||
role = delta['role']
|
||||
|
||||
# 获取增量内容
|
||||
delta_content = delta.get('content', '')
|
||||
reasoning_content = delta.get('reasoning_content', '')
|
||||
|
||||
# 处理 reasoning_content
|
||||
if reasoning_content:
|
||||
# accumulated_reasoning += reasoning_content
|
||||
# 如果设置了 remove_think,跳过 reasoning_content
|
||||
if remove_think:
|
||||
chunk_idx += 1
|
||||
continue
|
||||
|
||||
# 第一次出现 reasoning_content,添加 <think> 开始标签
|
||||
if not thinking_started:
|
||||
thinking_started = True
|
||||
delta_content = '<think>\n' + reasoning_content
|
||||
else:
|
||||
# 继续输出 reasoning_content
|
||||
delta_content = reasoning_content
|
||||
elif thinking_started and not thinking_ended and delta_content:
|
||||
# reasoning_content 结束,normal content 开始,添加 </think> 结束标签
|
||||
thinking_ended = True
|
||||
delta_content = '\n</think>\n' + delta_content
|
||||
|
||||
# 处理 content 中已有的 <think> 标签(如果需要移除)
|
||||
# if delta_content and remove_think and '<think>' in delta_content:
|
||||
# import re
|
||||
#
|
||||
# # 移除 <think> 标签及其内容
|
||||
# delta_content = re.sub(r'<think>.*?</think>', '', delta_content, flags=re.DOTALL)
|
||||
|
||||
# 处理工具调用增量
|
||||
if delta.get('tool_calls'):
|
||||
for tool_call in delta['tool_calls']:
|
||||
if tool_call['id'] != '':
|
||||
tool_id = tool_call['id']
|
||||
if tool_call['function']['name'] is not None:
|
||||
tool_name = tool_call['function']['name']
|
||||
|
||||
if tool_call['type'] is None:
|
||||
tool_call['type'] = 'function'
|
||||
tool_call['id'] = tool_id
|
||||
tool_call['function']['name'] = tool_name
|
||||
tool_call['function']['arguments'] = "" if tool_call['function']['arguments'] is None else tool_call['function']['arguments']
|
||||
|
||||
|
||||
# 跳过空的第一个 chunk(只有 role 没有内容)
|
||||
if chunk_idx == 0 and not delta_content and not reasoning_content and not delta.get('tool_calls'):
|
||||
chunk_idx += 1
|
||||
continue
|
||||
|
||||
# 构建 MessageChunk - 只包含增量内容
|
||||
chunk_data = {
|
||||
'role': role,
|
||||
'content': delta_content if delta_content else None,
|
||||
'tool_calls': delta.get('tool_calls'),
|
||||
'is_final': bool(finish_reason),
|
||||
}
|
||||
|
||||
# 移除 None 值
|
||||
chunk_data = {k: v for k, v in chunk_data.items() if v is not None}
|
||||
|
||||
yield llm_entities.MessageChunk(**chunk_data)
|
||||
chunk_idx += 1
|
||||
# return
|
||||
|
||||
async def invoke_llm(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
@@ -171,6 +305,7 @@ class ModelScopeChatCompletions(requester.LLMAPIRequester):
|
||||
messages: typing.List[llm_entities.Message],
|
||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
|
||||
for m in messages:
|
||||
@@ -185,7 +320,7 @@ class ModelScopeChatCompletions(requester.LLMAPIRequester):
|
||||
|
||||
try:
|
||||
return await self._closure(
|
||||
query=query, req_messages=req_messages, use_model=model, use_funcs=funcs, extra_args=extra_args
|
||||
query=query, req_messages=req_messages, use_model=model, use_funcs=funcs, extra_args=extra_args, remove_think=remove_think
|
||||
)
|
||||
except asyncio.TimeoutError:
|
||||
raise errors.RequesterError('请求超时')
|
||||
@@ -202,3 +337,50 @@ class ModelScopeChatCompletions(requester.LLMAPIRequester):
|
||||
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
|
||||
except openai.APIError as e:
|
||||
raise errors.RequesterError(f'请求错误: {e.message}')
|
||||
|
||||
async def invoke_llm_stream(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
model: requester.RuntimeLLMModel,
|
||||
messages: typing.List[llm_entities.Message],
|
||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.MessageChunk:
|
||||
req_messages = [] # req_messages 仅用于类内,外部同步由 query.messages 进行
|
||||
for m in messages:
|
||||
msg_dict = m.dict(exclude_none=True)
|
||||
content = msg_dict.get('content')
|
||||
if isinstance(content, list):
|
||||
# 检查 content 列表中是否每个部分都是文本
|
||||
if all(isinstance(part, dict) and part.get('type') == 'text' for part in content):
|
||||
# 将所有文本部分合并为一个字符串
|
||||
msg_dict['content'] = '\n'.join(part['text'] for part in content)
|
||||
req_messages.append(msg_dict)
|
||||
|
||||
try:
|
||||
async for item in self._closure_stream(
|
||||
query=query,
|
||||
req_messages=req_messages,
|
||||
use_model=model,
|
||||
use_funcs=funcs,
|
||||
extra_args=extra_args,
|
||||
remove_think=remove_think,
|
||||
):
|
||||
yield item
|
||||
|
||||
except asyncio.TimeoutError:
|
||||
raise errors.RequesterError('请求超时')
|
||||
except openai.BadRequestError as e:
|
||||
if 'context_length_exceeded' in e.message:
|
||||
raise errors.RequesterError(f'上文过长,请重置会话: {e.message}')
|
||||
else:
|
||||
raise errors.RequesterError(f'请求参数错误: {e.message}')
|
||||
except openai.AuthenticationError as e:
|
||||
raise errors.RequesterError(f'无效的 api-key: {e.message}')
|
||||
except openai.NotFoundError as e:
|
||||
raise errors.RequesterError(f'请求路径错误: {e.message}')
|
||||
except openai.RateLimitError as e:
|
||||
raise errors.RequesterError(f'请求过于频繁或余额不足: {e.message}')
|
||||
except openai.APIError as e:
|
||||
raise errors.RequesterError(f'请求错误: {e.message}')
|
||||
|
||||
@@ -29,6 +29,8 @@ spec:
|
||||
type: int
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
execution:
|
||||
python:
|
||||
path: ./modelscopechatcmpl.py
|
||||
|
||||
@@ -25,6 +25,7 @@ class MoonshotChatCompletions(chatcmpl.OpenAIChatCompletions):
|
||||
use_model: requester.RuntimeLLMModel,
|
||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
self.client.api_key = use_model.token_mgr.get_token()
|
||||
|
||||
@@ -54,6 +55,6 @@ class MoonshotChatCompletions(chatcmpl.OpenAIChatCompletions):
|
||||
resp = await self._req(args, extra_body=extra_args)
|
||||
|
||||
# 处理请求结果
|
||||
message = await self._make_msg(resp)
|
||||
message = await self._make_msg(resp, remove_think)
|
||||
|
||||
return message
|
||||
|
||||
@@ -14,7 +14,7 @@ spec:
|
||||
zh_Hans: 基础 URL
|
||||
type: string
|
||||
required: true
|
||||
default: "https://api.moonshot.com/v1"
|
||||
default: "https://api.moonshot.ai/v1"
|
||||
- name: timeout
|
||||
label:
|
||||
en_US: Timeout
|
||||
@@ -22,6 +22,8 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
execution:
|
||||
python:
|
||||
path: ./moonshotchatcmpl.py
|
||||
|
||||
BIN
pkg/provider/modelmgr/requesters/newapi.png
Normal file
BIN
pkg/provider/modelmgr/requesters/newapi.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 9.4 KiB |
17
pkg/provider/modelmgr/requesters/newapichatcmpl.py
Normal file
17
pkg/provider/modelmgr/requesters/newapichatcmpl.py
Normal file
@@ -0,0 +1,17 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import typing
|
||||
import openai
|
||||
|
||||
from . import chatcmpl
|
||||
|
||||
|
||||
class NewAPIChatCompletions(chatcmpl.OpenAIChatCompletions):
|
||||
"""New API ChatCompletion API 请求器"""
|
||||
|
||||
client: openai.AsyncClient
|
||||
|
||||
default_config: dict[str, typing.Any] = {
|
||||
'base_url': 'http://localhost:3000/v1',
|
||||
'timeout': 120,
|
||||
}
|
||||
31
pkg/provider/modelmgr/requesters/newapichatcmpl.yaml
Normal file
31
pkg/provider/modelmgr/requesters/newapichatcmpl.yaml
Normal file
@@ -0,0 +1,31 @@
|
||||
apiVersion: v1
|
||||
kind: LLMAPIRequester
|
||||
metadata:
|
||||
name: new-api-chat-completions
|
||||
label:
|
||||
en_US: New API
|
||||
zh_Hans: New API
|
||||
icon: newapi.png
|
||||
spec:
|
||||
config:
|
||||
- name: base_url
|
||||
label:
|
||||
en_US: Base URL
|
||||
zh_Hans: 基础 URL
|
||||
type: string
|
||||
required: true
|
||||
default: "http://localhost:3000/v1"
|
||||
- name: timeout
|
||||
label:
|
||||
en_US: Timeout
|
||||
zh_Hans: 超时时间
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
- text-embedding
|
||||
execution:
|
||||
python:
|
||||
path: ./newapichatcmpl.py
|
||||
attr: NewAPIChatCompletions
|
||||
@@ -17,7 +17,7 @@ from ....core import entities as core_entities
|
||||
REQUESTER_NAME: str = 'ollama-chat'
|
||||
|
||||
|
||||
class OllamaChatCompletions(requester.LLMAPIRequester):
|
||||
class OllamaChatCompletions(requester.ProviderAPIRequester):
|
||||
"""Ollama平台 ChatCompletion API请求器"""
|
||||
|
||||
client: ollama.AsyncClient
|
||||
@@ -44,6 +44,7 @@ class OllamaChatCompletions(requester.LLMAPIRequester):
|
||||
use_model: requester.RuntimeLLMModel,
|
||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
args = extra_args.copy()
|
||||
args['model'] = use_model.model_entity.name
|
||||
@@ -110,6 +111,7 @@ class OllamaChatCompletions(requester.LLMAPIRequester):
|
||||
messages: typing.List[llm_entities.Message],
|
||||
funcs: typing.List[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message:
|
||||
req_messages: list = []
|
||||
for m in messages:
|
||||
@@ -126,6 +128,19 @@ class OllamaChatCompletions(requester.LLMAPIRequester):
|
||||
use_model=model,
|
||||
use_funcs=funcs,
|
||||
extra_args=extra_args,
|
||||
remove_think=remove_think,
|
||||
)
|
||||
except asyncio.TimeoutError:
|
||||
raise errors.RequesterError('请求超时')
|
||||
|
||||
async def invoke_embedding(
|
||||
self,
|
||||
model: requester.RuntimeEmbeddingModel,
|
||||
input_text: list[str],
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
) -> list[list[float]]:
|
||||
return await self.client.embed(
|
||||
model=model.model_entity.name,
|
||||
input=input_text,
|
||||
**extra_args,
|
||||
)
|
||||
|
||||
@@ -22,6 +22,9 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
- text-embedding
|
||||
execution:
|
||||
python:
|
||||
path: ./ollamachat.py
|
||||
|
||||
@@ -22,6 +22,9 @@ spec:
|
||||
type: integer
|
||||
required: true
|
||||
default: 120
|
||||
support_type:
|
||||
- llm
|
||||
- text-embedding
|
||||
execution:
|
||||
python:
|
||||
path: ./openrouterchatcmpl.py
|
||||
|
||||
@@ -4,6 +4,12 @@ import openai
|
||||
import typing
|
||||
|
||||
from . import chatcmpl
|
||||
import openai.types.chat.chat_completion as chat_completion
|
||||
from .. import requester
|
||||
from ....core import entities as core_entities
|
||||
from ... import entities as llm_entities
|
||||
from ...tools import entities as tools_entities
|
||||
import re
|
||||
|
||||
|
||||
class PPIOChatCompletions(chatcmpl.OpenAIChatCompletions):
|
||||
@@ -15,3 +21,193 @@ class PPIOChatCompletions(chatcmpl.OpenAIChatCompletions):
|
||||
'base_url': 'https://api.ppinfra.com/v3/openai',
|
||||
'timeout': 120,
|
||||
}
|
||||
|
||||
is_think: bool = False
|
||||
|
||||
async def _make_msg(
|
||||
self,
|
||||
chat_completion: chat_completion.ChatCompletion,
|
||||
remove_think: bool,
|
||||
) -> llm_entities.Message:
|
||||
chatcmpl_message = chat_completion.choices[0].message.model_dump()
|
||||
# print(chatcmpl_message.keys(), chatcmpl_message.values())
|
||||
|
||||
# 确保 role 字段存在且不为 None
|
||||
if 'role' not in chatcmpl_message or chatcmpl_message['role'] is None:
|
||||
chatcmpl_message['role'] = 'assistant'
|
||||
|
||||
reasoning_content = chatcmpl_message['reasoning_content'] if 'reasoning_content' in chatcmpl_message else None
|
||||
|
||||
# deepseek的reasoner模型
|
||||
chatcmpl_message["content"] = await self._process_thinking_content(
|
||||
chatcmpl_message['content'],reasoning_content,remove_think)
|
||||
|
||||
# 移除 reasoning_content 字段,避免传递给 Message
|
||||
if 'reasoning_content' in chatcmpl_message:
|
||||
del chatcmpl_message['reasoning_content']
|
||||
|
||||
|
||||
message = llm_entities.Message(**chatcmpl_message)
|
||||
|
||||
return message
|
||||
|
||||
async def _process_thinking_content(
|
||||
self,
|
||||
content: str,
|
||||
reasoning_content: str = None,
|
||||
remove_think: bool = False,
|
||||
) -> tuple[str, str]:
|
||||
"""处理思维链内容
|
||||
|
||||
Args:
|
||||
content: 原始内容
|
||||
reasoning_content: reasoning_content 字段内容
|
||||
remove_think: 是否移除思维链
|
||||
|
||||
Returns:
|
||||
处理后的内容
|
||||
"""
|
||||
if remove_think:
|
||||
content = re.sub(
|
||||
r'<think>.*?</think>', '', content, flags=re.DOTALL
|
||||
)
|
||||
else:
|
||||
if reasoning_content is not None:
|
||||
content = (
|
||||
'<think>\n' + reasoning_content + '\n</think>\n' + content
|
||||
)
|
||||
return content
|
||||
|
||||
async def _make_msg_chunk(
|
||||
self,
|
||||
delta: dict[str, typing.Any],
|
||||
idx: int,
|
||||
) -> llm_entities.MessageChunk:
|
||||
# 处理流式chunk和完整响应的差异
|
||||
# print(chat_completion.choices[0])
|
||||
|
||||
# 确保 role 字段存在且不为 None
|
||||
if 'role' not in delta or delta['role'] is None:
|
||||
delta['role'] = 'assistant'
|
||||
|
||||
reasoning_content = delta['reasoning_content'] if 'reasoning_content' in delta else None
|
||||
|
||||
delta['content'] = '' if delta['content'] is None else delta['content']
|
||||
# print(reasoning_content)
|
||||
|
||||
# deepseek的reasoner模型
|
||||
|
||||
if reasoning_content is not None:
|
||||
delta['content'] += reasoning_content
|
||||
|
||||
message = llm_entities.MessageChunk(**delta)
|
||||
|
||||
return message
|
||||
|
||||
async def _closure_stream(
|
||||
self,
|
||||
query: core_entities.Query,
|
||||
req_messages: list[dict],
|
||||
use_model: requester.RuntimeLLMModel,
|
||||
use_funcs: list[tools_entities.LLMFunction] = None,
|
||||
extra_args: dict[str, typing.Any] = {},
|
||||
remove_think: bool = False,
|
||||
) -> llm_entities.Message | typing.AsyncGenerator[llm_entities.MessageChunk, None]:
|
||||
self.client.api_key = use_model.token_mgr.get_token()
|
||||
|
||||
args = {}
|
||||
args['model'] = use_model.model_entity.name
|
||||
|
||||
if use_funcs:
|
||||
tools = await self.ap.tool_mgr.generate_tools_for_openai(use_funcs)
|
||||
|
||||
if tools:
|
||||
args['tools'] = tools
|
||||
|
||||
# 设置此次请求中的messages
|
||||
messages = req_messages.copy()
|
||||
|
||||
# 检查vision
|
||||
for msg in messages:
|
||||
if 'content' in msg and isinstance(msg['content'], list):
|
||||
for me in msg['content']:
|
||||
if me['type'] == 'image_base64':
|
||||
me['image_url'] = {'url': me['image_base64']}
|
||||
me['type'] = 'image_url'
|
||||
del me['image_base64']
|
||||
|
||||
args['messages'] = messages
|
||||
args['stream'] = True
|
||||
|
||||
tool_calls_map: dict[str, llm_entities.ToolCall] = {}
|
||||
chunk_idx = 0
|
||||
thinking_started = False
|
||||
thinking_ended = False
|
||||
role = 'assistant' # 默认角色
|
||||
async for chunk in self._req_stream(args, extra_body=extra_args):
|
||||
# 解析 chunk 数据
|
||||
if hasattr(chunk, 'choices') and chunk.choices:
|
||||
choice = chunk.choices[0]
|
||||
delta = choice.delta.model_dump() if hasattr(choice, 'delta') else {}
|
||||
finish_reason = getattr(choice, 'finish_reason', None)
|
||||
else:
|
||||
delta = {}
|
||||
finish_reason = None
|
||||
|
||||
# 从第一个 chunk 获取 role,后续使用这个 role
|
||||
if 'role' in delta and delta['role']:
|
||||
role = delta['role']
|
||||
|
||||
# 获取增量内容
|
||||
delta_content = delta.get('content', '')
|
||||
# reasoning_content = delta.get('reasoning_content', '')
|
||||
|
||||
if remove_think:
|
||||
if delta['content'] is not None:
|
||||
if '<think>' in delta['content'] and not thinking_started and not thinking_ended:
|
||||
thinking_started = True
|
||||
continue
|
||||
elif delta['content'] == r'</think>' and not thinking_ended:
|
||||
thinking_ended = True
|
||||
continue
|
||||
elif thinking_ended and delta['content'] == '\n\n' and thinking_started:
|
||||
thinking_started = False
|
||||
continue
|
||||
elif thinking_started and not thinking_ended:
|
||||
continue
|
||||
|
||||
|
||||
delta_tool_calls = None
|
||||
if delta.get('tool_calls'):
|
||||
for tool_call in delta['tool_calls']:
|
||||
if tool_call['id'] and tool_call['function']['name']:
|
||||
tool_id = tool_call['id']
|
||||
tool_name = tool_call['function']['name']
|
||||
|
||||
if tool_call['id'] is None:
|
||||
tool_call['id'] = tool_id
|
||||
if tool_call['function']['name'] is None:
|
||||
tool_call['function']['name'] = tool_name
|
||||
if tool_call['function']['arguments'] is None:
|
||||
tool_call['function']['arguments'] = ''
|
||||
if tool_call['type'] is None:
|
||||
tool_call['type'] = 'function'
|
||||
|
||||
# 跳过空的第一个 chunk(只有 role 没有内容)
|
||||
if chunk_idx == 0 and not delta_content and not delta.get('tool_calls'):
|
||||
chunk_idx += 1
|
||||
continue
|
||||
|
||||
# 构建 MessageChunk - 只包含增量内容
|
||||
chunk_data = {
|
||||
'role': role,
|
||||
'content': delta_content if delta_content else None,
|
||||
'tool_calls': delta.get('tool_calls'),
|
||||
'is_final': bool(finish_reason),
|
||||
}
|
||||
|
||||
# 移除 None 值
|
||||
chunk_data = {k: v for k, v in chunk_data.items() if v is not None}
|
||||
|
||||
yield llm_entities.MessageChunk(**chunk_data)
|
||||
chunk_idx += 1
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user